Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Jan 1;88(1):127–137. doi: 10.1083/jcb.88.1.127

Studies on cell adhesion and recognition. I. Extent and specificity of cell adhesion triggered by carbohydrate-reactive proteins (glycosidases and lectins) and by fibronectin

PMCID: PMC2111728  PMID: 6782107

Abstract

The extent and the specificity of the initial cell attachment induced by various proteins coated on plastic surfaces have been studied with the following results: (a) Cell adhesion on the surfaces coated with sialidase and beta-galactosidase was as strong as on concanavalin A and limulus lectin-coated surfaces and the reactions were strongly inhibited by glycosidase inhibitors or by competitive substrates. The adhesion on sialidase was inhibited by 2-deoxy-2,3-dehydro-N- acetylneuraminic acid and by polysialoganglioside (GT1b) at low concentration (0.05-0.1 mM). The cell adhesion on beta-galactosidase coat was inhibited by 1,4-D-galactonolactone and beta-methylgalactoside but not by alpha-methylgalactoside. Thus, the initiation of cell adhesion on glycosidase surfaces could be mediated through the interactions of the specific binding sites of the enzyme surface with the cell surface substrates under physiological conditions. (b) Cell adhesion on various lectins could be blocked by various competing monosaccharides at the concentrations similar to the inhibitory concentrations for binding of lectins from solution to the cells. (c) Cell adhesion on fibronectin surfaces as well as on gelatin-coated surfaces was equally inhibited by GT1b at relatively high concentrations (0.25-0.5 mM). Lower concentrations of GT1b (0.05-0.1 mM) inhibited the cell adhesion on surfaces of Limulus lectin and sialidase. It is suggested that the cell adhesion mediated by fibronectin is based on yet unknown interactions in contrast to a specific cell adhesion through glycosidases and lectins.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURTON R. M. THE ACTION OF NEURAMINIDASE FROM CLOSTRIDIUM PERFRINGENS ON GANGLIOSIDES. J Neurochem. 1963 Jul;10:503–512. doi: 10.1111/j.1471-4159.1963.tb09853.x. [DOI] [PubMed] [Google Scholar]
  2. Bhavanandan V. P., Katlic A. W. The interaction of wheat germ agglutinin with sialoglycoproteins. The role of sialic acid. J Biol Chem. 1979 May 25;254(10):4000–4008. [PubMed] [Google Scholar]
  3. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  4. Carter W. G., Fukuda M., Lingwood C., Hakomori S. Chemical composition, gross structure, and organization of transformation-sensitive glycoproteins. Ann N Y Acad Sci. 1978 Jun 20;312:160–177. doi: 10.1111/j.1749-6632.1978.tb16801.x. [DOI] [PubMed] [Google Scholar]
  5. Carter W. G., Hakomori S. I. A protease-resistant, transformation-sensitive membrane glycoprotein and an intermediate filament-forming protein of hamster embryo fibroblasts. J Biol Chem. 1978 Apr 25;253(8):2867–2874. [PubMed] [Google Scholar]
  6. Carter W. G., Hakomori S. Isolation and partial characterization of "galactoprotein a" (LETS) and "galactoprotein b" from hamster embryo fibroblasts. Biochem Biophys Res Commun. 1976 May 23;76(2):299–308. doi: 10.1016/0006-291x(77)90725-2. [DOI] [PubMed] [Google Scholar]
  7. Carter W. G., Hakomori S. Isolation of galactoprotein a from hamster embryo fibroblasts and characterization of the carbohydrate unit. Biochemistry. 1979 Feb 20;18(4):730–738. doi: 10.1021/bi00571a027. [DOI] [PubMed] [Google Scholar]
  8. Carter W. G., Rauvala H., Hakomori S. I. Studies on cell adhesion and recognition. II. The kinetics of cell adhesion and cell spreading on surfaces coated with carbohydrate-reactive proteins (glycosidases and lectins) and fibronectin. J Cell Biol. 1981 Jan;88(1):138–148. doi: 10.1083/jcb.88.1.138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Engvall E., Ruoslahti E. Binding of soluble form of fibroblast surface protein, fibronectin, to collagen. Int J Cancer. 1977 Jul 15;20(1):1–5. doi: 10.1002/ijc.2910200102. [DOI] [PubMed] [Google Scholar]
  10. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  11. Fukuda M., Fukuda M. N., Hakomori S. Developmental change and genetic defect in the carbohydrate structure of band 3 glycoprotein of human erythrocyte membrane. J Biol Chem. 1979 May 25;254(10):3700–3703. [PubMed] [Google Scholar]
  12. Fukuda M., Hakomori S. Carbohydrate structure of galactoprotein a, a major transformation-sensitive glycoprotein released from hamster embryo fibroblasts. J Biol Chem. 1979 Jun 25;254(12):5451–5457. [PubMed] [Google Scholar]
  13. Fukuda M., Hakomori S. Proteolytic and chemical fragmentation of galactoprotein a, a major transformation-sensitive glycoprotein released from hamster embryo fibroblasts. J Biol Chem. 1979 Jun 25;254(12):5442–5450. [PubMed] [Google Scholar]
  14. Gahmberg C. G., Andersson L. C. Selective radioactive labeling of cell surface sialoglycoproteins by periodate-tritiated borohydride. J Biol Chem. 1977 Aug 25;252(16):5888–5894. [PubMed] [Google Scholar]
  15. Gahmberg C. G., Hakomori S. I. Altered growth behavior of malignant cells associated with changes in externally labeled glycoprotein and glycolipid. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3329–3333. doi: 10.1073/pnas.70.12.3329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Goldstein I. J., Hayes C. E. The lectins: carbohydrate-binding proteins of plants and animals. Adv Carbohydr Chem Biochem. 1978;35:127–340. doi: 10.1016/s0065-2318(08)60220-6. [DOI] [PubMed] [Google Scholar]
  17. Grinnell F. Cellular adhesiveness and extracellular substrata. Int Rev Cytol. 1978;53:65–144. doi: 10.1016/s0074-7696(08)62241-x. [DOI] [PubMed] [Google Scholar]
  18. Grinnell F., Feld M. K. Initial adhesion of human fibroblasts in serum-free medium: possible role of secreted fibronectin. Cell. 1979 May;17(1):117–129. doi: 10.1016/0092-8674(79)90300-3. [DOI] [PubMed] [Google Scholar]
  19. Hakomori S. Structures and organization of cell surface glycolipids dependency on cell growth and malignant transformation. Biochim Biophys Acta. 1975 Mar 20;417(1):55–89. doi: 10.1016/0304-419x(75)90008-6. [DOI] [PubMed] [Google Scholar]
  20. Heifetz A., Lennarz W. J. Biosynthesis of N-glycosidically linked glycoproteins during gastrulation of sea urchin embryos. J Biol Chem. 1979 Jul 10;254(13):6119–6127. [PubMed] [Google Scholar]
  21. Hickman S., Neufeld E. F. A hypothesis for I-cell disease: defective hydrolases that do not enter lysosomes. Biochem Biophys Res Commun. 1972 Nov 15;49(4):992–999. doi: 10.1016/0006-291x(72)90310-5. [DOI] [PubMed] [Google Scholar]
  22. Huang R. T. Cell adhesion mediated by glycolipids. Nature. 1978 Dec 7;276(5688):624–626. doi: 10.1038/276624a0. [DOI] [PubMed] [Google Scholar]
  23. Hughes R. C., Pena S. D., Clark J., Dourmashkin R. R. Molecular requirements for adhesion and spreading of hamster fibroblasts. Exp Cell Res. 1979 Jul;121(2):307–314. doi: 10.1016/0014-4827(79)90009-0. [DOI] [PubMed] [Google Scholar]
  24. Hynes R. O. Alteration of cell-surface proteins by viral transformation and by proteolysis. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3170–3174. doi: 10.1073/pnas.70.11.3170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hök M., Rubin K., Oldberg A., Obrink B., Vaheri A. Cold-insoluble globulin mediates the adhesion of rat liver cells to plastic Petri dishes. Biochem Biophys Res Commun. 1977 Dec 7;79(3):726–733. doi: 10.1016/0006-291x(77)91172-x. [DOI] [PubMed] [Google Scholar]
  26. Kieda C., Roche A. C., Delmotte F., Monsigny M. Lymphocyte membrane lectins. Direct visualization by the use of fluoresceinyl-glycosylated cytochemical markers. FEBS Lett. 1979 Mar 15;99(2):329–332. doi: 10.1016/0014-5793(79)80984-9. [DOI] [PubMed] [Google Scholar]
  27. Kleinman H. K., Martin G. R., Fishman P. H. Ganglioside inhibition of fibronectin-mediated cell adhesion to collagen. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3367–3371. doi: 10.1073/pnas.76.7.3367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kuusela P., Ruoslahti E., Engvall E., Vaheri A. Immunological interspecies cross-reactions of fibroblast surface antigen (fibronectin). Immunochemistry. 1976 Aug;13(8):639–642. doi: 10.1016/0019-2791(76)90203-2. [DOI] [PubMed] [Google Scholar]
  29. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  30. Laishes B. A., Williams G. M. Conditions affecting primary cell cultures of functional adult rat hepatocytes. II. Dexamethasone enhanced longevity and maintenance of morphology. In Vitro. 1976 Dec;12(12):821–832. doi: 10.1007/BF02796367. [DOI] [PubMed] [Google Scholar]
  31. Li S. C., Mazzotta M. Y., Chien S. F., Li Y. T. Isolation and characterization of jack bean beta-galactosidase. J Biol Chem. 1975 Sep 10;250(17):6786–6791. [PubMed] [Google Scholar]
  32. Lotan R., Nicolson G. L. Purification of cell membrane glycoproteins by lectin affinity chromatography. Biochim Biophys Acta. 1979 Dec 20;559(4):329–376. doi: 10.1016/0304-4157(79)90010-8. [DOI] [PubMed] [Google Scholar]
  33. Marchase R. B., Vosbeck K., Roth S. Intercellular adhesive specificity. Biochim Biophys Acta. 1976 Dec 14;457(3-4):385–416. doi: 10.1016/0304-4157(76)90005-8. [DOI] [PubMed] [Google Scholar]
  34. Mattiasson B., Mosbach K. Assay procedures for immobilized enzymes. Methods Enzymol. 1976;44:335–353. doi: 10.1016/s0076-6879(76)44027-2. [DOI] [PubMed] [Google Scholar]
  35. Meindl P., Bodo G., Palese P., Schulman J., Tuppy H. Inhibition of neuraminidase activity by derivatives of 2-deoxy-2,3-dehydro-N-acetylneuraminic acid. Virology. 1974 Apr;58(2):457–463. doi: 10.1016/0042-6822(74)90080-4. [DOI] [PubMed] [Google Scholar]
  36. Miller I. R., Great H. Protein labeling by acetylation. Biopolymers. 1972;11(12):2533–2536. doi: 10.1002/bip.1972.360111212. [DOI] [PubMed] [Google Scholar]
  37. Momoi T., Ando S., Magai Y. High resolution preparative column chromatographic system for gangliosides using DEAE-Sephadex and a new porus silica, Iatrobeads. Biochim Biophys Acta. 1976 Sep 27;441(3):488–497. [PubMed] [Google Scholar]
  38. Muramatsu T., Gachelin G., Damonneville M., Delarbre C., Jacob F. Cell surface carbohydrates of embryonal carcinoma cells: polysaccharidic side chains of F9 antigens and of receptors to two lectins, FBP and PNA. Cell. 1979 Sep;18(1):183–191. doi: 10.1016/0092-8674(79)90367-2. [DOI] [PubMed] [Google Scholar]
  39. Nees S., Veh R. W., Schauer R. Purification and characterization of neuraminidase from Clostridium perfringens. Hoppe Seylers Z Physiol Chem. 1975 Jun;356(6):1027–1042. doi: 10.1515/bchm2.1975.356.s1.1027. [DOI] [PubMed] [Google Scholar]
  40. Peters B. P., Ebisu S., Goldstein I. J., Flashner M. Interaction of wheat germ agglutinin with sialic acid. Biochemistry. 1979 Nov 27;18(24):5505–5511. doi: 10.1021/bi00591a038. [DOI] [PubMed] [Google Scholar]
  41. Rauvala H., Hakomori S. I. Studies on cell adhesion and recognition. III. The occurrence of alpha-mannosidase at the fibroblast cell surface, and its possible role in cell recognition. J Cell Biol. 1981 Jan;88(1):149–159. doi: 10.1083/jcb.88.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Rauvala H. Monomer-micelle transition of the ganglioside GM1 and the hydrolysis by Clostridium perfringens neuraminidase. Eur J Biochem. 1979 Jul;97(2):555–564. doi: 10.1111/j.1432-1033.1979.tb13144.x. [DOI] [PubMed] [Google Scholar]
  43. Rice R. H., Means G. E. Radioactive labeling of proteins in vitro. J Biol Chem. 1971 Feb 10;246(3):831–832. [PubMed] [Google Scholar]
  44. Roseman S. The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion. Chem Phys Lipids. 1970 Oct;5(1):270–297. doi: 10.1016/0009-3084(70)90024-1. [DOI] [PubMed] [Google Scholar]
  45. Rutishauser U., Sachs L. Receptor mobility and the binding of cells to lectin-coated fibers. J Cell Biol. 1975 Jul;66(1):76–85. doi: 10.1083/jcb.66.1.76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. STEINBERG M. S. Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. Science. 1963 Aug 2;141(3579):401–408. doi: 10.1126/science.141.3579.401. [DOI] [PubMed] [Google Scholar]
  47. SVENNERHOLM L. CHROMATOGRAPHIC SEPARATION OF HUMAN BRAIN GANGLIOSIDES. J Neurochem. 1963 Sep;10:613–623. doi: 10.1111/j.1471-4159.1963.tb08933.x. [DOI] [PubMed] [Google Scholar]
  48. SVENNERHOLM L. Quantitative estimation of sialic acids. II. A colorimetric resorcinol-hydrochloric acid method. Biochim Biophys Acta. 1957 Jun;24(3):604–611. doi: 10.1016/0006-3002(57)90254-8. [DOI] [PubMed] [Google Scholar]
  49. Schmid K., Polis A., Hunziker K., Fricke R., Yayoshi M. Partial characterization of the sialic acid-free forms of alpha-1-acid glycoprotein from human plasma. Biochem J. 1967 Aug;104(2):361–368. doi: 10.1042/bj1040361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Seglen P. O. Preparation of rat liver cells. 3. Enzymatic requirements for tissue dispersion. Exp Cell Res. 1973 Dec;82(2):391–398. doi: 10.1016/0014-4827(73)90357-1. [DOI] [PubMed] [Google Scholar]
  51. Simpson D. L., Thorne D. R., Loh H. H. Lectins: endogenous carbohydrate-binding proteins from vertebrate tissues: functional role in recognition processes? Life Sci. 1978 Mar;22(9):727–748. doi: 10.1016/0024-3205(78)90242-4. [DOI] [PubMed] [Google Scholar]
  52. Udenfriend S., Stein S., Böhlen P., Dairman W., Leimgruber W., Weigele M. Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science. 1972 Nov 24;178(4063):871–872. doi: 10.1126/science.178.4063.871. [DOI] [PubMed] [Google Scholar]
  53. Von Figura K., Voss B. Cell surface-associated lysosomal enzymes in cultured human skin fibroblasts. Exp Cell Res. 1979 Jul;121(2):267–276. doi: 10.1016/0014-4827(79)90004-1. [DOI] [PubMed] [Google Scholar]
  54. Warren L., Fuhrer J. P., Buck C. A. Surface glycoproteins of cells before and after transformation by oncogenic viruses. Fed Proc. 1973 Jan;32(1):80–85. [PubMed] [Google Scholar]
  55. Weigel P. H., Schnaar R. L., Kuhlenschmidt M. S., Schmell E., Lee R. T., Lee Y. C., Roseman S. Adhesion of hepatocytes to immobilized sugars. A threshold phenomenon. J Biol Chem. 1979 Nov 10;254(21):10830–10838. [PubMed] [Google Scholar]
  56. Yamada K. M., Olden K. Fibronectins--adhesive glycoproteins of cell surface and blood. Nature. 1978 Sep 21;275(5677):179–184. doi: 10.1038/275179a0. [DOI] [PubMed] [Google Scholar]
  57. Yamada K. M., Yamada S. S., Pastan I. Cell surface protein partially restores morphology, adhesiveness, and contact inhibition of movement to transformed fibroblasts. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1217–1221. doi: 10.1073/pnas.73.4.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES