Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Jan 1;88(1):179–188. doi: 10.1083/jcb.88.1.179

Secretory protein decondensation as a distinct, Ca2+-mediated event during the final steps of exocytosis in Paramecium cells

PMCID: PMC2111732  PMID: 7204486

Abstract

The contents of secretory vesicles ("trichocysts") were isolated in the condensed state from Paramecium cells. It is well known that the majority portion of trichocysts perform a rapid decondensation process during exocytosis, which is visible in the light microscope. We have analyzed this condensed leads to decondensed transition in vitro and determined some relevant parameters. In the condensed state, free phosphate (and possibly magnesium) ions screen local surplus charges. This is supported by x-ray spectra recorded from individual trichocysts (prepared by physical methods) in a scanning transmission electron microscope. Calcium, as well as other ions that eliminate phosphate by precipitation, produces decondensation in vitro. Under in vivo conditions, Ca2+ enters the vesicle lumen from the outside medium, once an exocytic opening has been formed. Consequently, within the intact cell, membrane fusion and protein decondensation take place with optimal timing. Ca2+ might then trigger decondensation in the same way by precipitating phosphate ions (as it does in vitro) and, indeed, such precipitates (again yielding Ca and P signals in x-ray spectra) can be recognized in situ under trigger conditions. As decondensation is a unidirectional, rapid process in Paramecium cells, it would contribute to drive the discharge of the secretory contents to the outside. Further implications on the energetics of exocytosis are discussed.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adoutte A., Ramanathan R., Lewis R. M., Dute R. R., Ling K. Y., Kung C., Nelson D. L. Biochemical studies of the excitable membrane of Paramecium tetraurelia. III. Proteins of cilia and ciliary membranes. J Cell Biol. 1980 Mar;84(3):717–738. doi: 10.1083/jcb.84.3.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderer R., Hausmann K. Properties and structure of isolated extrusive organelles. J Ultrastruct Res. 1977 Jul;60(1):21–26. doi: 10.1016/s0022-5320(77)80037-3. [DOI] [PubMed] [Google Scholar]
  3. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  4. Bannister L. H. The structure of trichocysts in Paramecium caudatum. J Cell Sci. 1972 Nov;11(3):899–929. doi: 10.1242/jcs.11.3.899. [DOI] [PubMed] [Google Scholar]
  5. Begg D. A., Rebhun L. I. pH regulates the polymerization of actin in the sea urchin egg cortex. J Cell Biol. 1979 Oct;83(1):241–248. doi: 10.1083/jcb.83.1.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blaschke E., Bergovist U., Uvnäs B. Identification of the mucopolysaccharides in catecholamine-containing subcellular particel fractions from various rat, cat and ox tissues. Acta Physiol Scand. 1976 Mar;97(1):110–120. doi: 10.1111/j.1748-1716.1976.tb10241.x. [DOI] [PubMed] [Google Scholar]
  7. Caulfield J. P., Lewis R. A., Hein A., Austen K. F. Secretion in dissociated human pulmonary mast cells. Evidence for solubilization of granule contents before discharge. J Cell Biol. 1980 May;85(2):299–312. doi: 10.1083/jcb.85.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chakravarty N. Correlation between plasma membrane ATPase activity of mast cells and histamine secretion [proceedings]. Agents Actions. 1979 Apr;9(1):62–63. doi: 10.1007/BF02024113. [DOI] [PubMed] [Google Scholar]
  9. Clemente F., Meldolesi J. Calcium and pancreatic secretion. I. Subcellular distribution of calcium and magnesium in the exocrine pancreas of the guinea pig. J Cell Biol. 1975 Apr;65(1):88–102. doi: 10.1083/jcb.65.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Douglas W. W. Involvement of calcium in exocytosis and the exocytosis--vesiculation sequence. Biochem Soc Symp. 1974;(39):1–28. [PubMed] [Google Scholar]
  11. Ermak T. H., Rothman S. S. Internal organization of the zymogen granule: formation of reticular structures in vitro. J Ultrastruct Res. 1978 Jul;64(1):98–113. doi: 10.1016/s0022-5320(78)90010-2. [DOI] [PubMed] [Google Scholar]
  12. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  13. Hausmann K. Extrusive organelles in protists. Int Rev Cytol. 1978;52:197–276. doi: 10.1016/s0074-7696(08)60757-3. [DOI] [PubMed] [Google Scholar]
  14. Jamieson J. D., Palade G. E. Condensing vacuole conversion and zymogen granule discharge in pancreatic exocrine cells: metabolic studies. J Cell Biol. 1971 Mar;48(3):503–522. doi: 10.1083/jcb.48.3.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kagayama M., Douglas W. W. Electron microscope evidence of calcium-induced exocytosis in mast cells treated with 48-80 or the ionophores A-23187 and X-537A. J Cell Biol. 1974 Aug;62(2):519–526. doi: 10.1083/jcb.62.2.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kirshner N., Viveros O. H. The secretory cycle in the adrenal medulla. Pharmacol Rev. 1972 Jun;24(2):385–398. [PubMed] [Google Scholar]
  17. LARDY H. A., JOHNSON D., McMURRAY W. C. Antibiotics as tools for metabolic studies. I. A survey of toxic antibiotics in respiratory, phosphorylative and glycolytic systems. Arch Biochem Biophys. 1958 Dec;78(2):587–597. doi: 10.1016/0003-9861(58)90383-7. [DOI] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Lagunoff D. Membrane fusion during mast cell secretion. J Cell Biol. 1973 Apr;57(1):252–259. doi: 10.1083/jcb.57.1.252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lange R. H. Distribution of molecule numbers per secretion granule. A study of crystals in glucagon secreting cells. Eur J Cell Biol. 1979 Oct;20(1):71–75. [PubMed] [Google Scholar]
  21. Matt H., Bilinski M., Plattner H. Adenosinetriphosphate, calcium and temperature requirements for the final steps of exocytosis in Paramecium cells. J Cell Sci. 1978 Aug;32:67–86. doi: 10.1242/jcs.32.1.67. [DOI] [PubMed] [Google Scholar]
  22. Nelson B. D. Rat liver acid phosphatase: differences in lysosomal and cytoplasmic forms. Proc Soc Exp Biol Med. 1966 Apr;121(4):998–1001. doi: 10.3181/00379727-121-30947. [DOI] [PubMed] [Google Scholar]
  23. Palade G. Intracellular aspects of the process of protein synthesis. Science. 1975 Aug 1;189(4200):347–358. doi: 10.1126/science.1096303. [DOI] [PubMed] [Google Scholar]
  24. Plattner H., Miller F., Bachmann L. Membrane specializations in the form of regular membrane-to-membrane attachment sites in Paramecium. A correlated freeze-etching and ultrathin-sectioning analysis. J Cell Sci. 1973 Nov;13(3):687–719. doi: 10.1242/jcs.13.3.687. [DOI] [PubMed] [Google Scholar]
  25. Plattner H., Salpeter M., Carrel J. E., Eisner T. Struktur und Funktion des Drüsenepithels der postabdominalen Tergite von Blatta orientalis. Z Zellforsch Mikrosk Anat. 1972;125(1):45–87. [PubMed] [Google Scholar]
  26. Pollard H. B., Pazoles C. J., Creutz C. E., Zinder O. The chromaffin granule and possible mechanisms of exocytosis. Int Rev Cytol. 1979;58:159–197. doi: 10.1016/s0074-7696(08)61475-8. [DOI] [PubMed] [Google Scholar]
  27. Reggio H. A., Palade G. E. Sulfated compounds in the zymogen granules of the guinea pig pancreas. J Cell Biol. 1978 May;77(2):288–314. doi: 10.1083/jcb.77.2.288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Simson J. A., Dom R. M., Sannes P. L., Spicer S. S. Morphology and cytochemistry of acinar secretory granules in normal and isoproterenol-treated rat submandibular glands. J Microsc. 1978 Jul;113(2):185–203. doi: 10.1111/j.1365-2818.1978.tb02462.x. [DOI] [PubMed] [Google Scholar]
  29. Smith N. K. A review of sources of spurious silicon peaks in electron microprobe X-ray spectra of biological specimens. Anal Biochem. 1979 Apr 1;94(1):100–104. doi: 10.1016/0003-2697(79)90796-6. [DOI] [PubMed] [Google Scholar]
  30. Steers E., Jr, Beisson J., Marchesi V. T. A structural protein extracted from the trichocyst of Paramecium aurelia. Exp Cell Res. 1969 Oct;57(2):392–396. doi: 10.1016/0014-4827(69)90165-7. [DOI] [PubMed] [Google Scholar]
  31. TAUSSKY H. H., SHORR E. A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem. 1953 Jun;202(2):675–685. [PubMed] [Google Scholar]
  32. Tashiro T., Stadler H. Chemical composition of cholinergic synaptic vesicles from Torpedo marmorata based on improved purification. Eur J Biochem. 1978 Oct 16;90(3):479–487. doi: 10.1111/j.1432-1033.1978.tb12627.x. [DOI] [PubMed] [Google Scholar]
  33. Valverde I., Vandermeers A., Anjaneyulu R., Malaisse W. J. Calmodulin activation of adenylate cyclase in pancreatic islets. Science. 1979 Oct 12;206(4415):225–227. doi: 10.1126/science.225798. [DOI] [PubMed] [Google Scholar]
  34. Wagner J. A., Carlson S. S., Kelly R. B. Chemical and physical characterization of cholinergic synaptic vesicles. Biochemistry. 1978 Apr 4;17(7):1199–1206. doi: 10.1021/bi00600a010. [DOI] [PubMed] [Google Scholar]
  35. Winkler H. The composition of adrenal chromaffin granules: an assessment of controversial results. Neuroscience. 1976;1(2):65–80. doi: 10.1016/0306-4522(76)90001-4. [DOI] [PubMed] [Google Scholar]
  36. van Lennep E. W., Kennerson A. R., Duck-Chong C. G., Pollak J. K. Fine structure of the secretion granules in the mandibular gland of the echidna, Tachyglossus aculeatus (Monotremata). Cytobiologie. 1978 Oct;18(1):1–9. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES