Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Feb 1;88(2):338–345. doi: 10.1083/jcb.88.2.338

Density and distribution of α-bungarotoxin-binding sites in postsynaptic structures of regenerated rat skeletal muscle

D Bader
PMCID: PMC2111735  PMID: 7204497

Abstract

Acetylcholine receptors (AChR) are organized in a discrete and predictable fashion in the postsynaptic regions of vertebrate skeletal muscle. When muscle is damaged, nerves and myofibers including muscular elements of the endplate degenerate, but the connective tissue elements survive. Muscle fibers regenerate within the basal lamina of the original myofiber. Postsynaptic differentiation in regenerated mammalian skeletal muscle can occur in different ways: (a) at the site of the original endplate in the presence or absence of the nerve, or (b) at ectopic regions of the regenerated myofiber in the presence of the nerve when the original endplate is not present. The present study used (125)I-α- bungarotoxin ((125)I-α-BuTX) and EM autoradiography to examine the density and distribution of AChR in postsynaptic structures regenerated at the site of the original endplate in the absence of the nerve and at ectopic sites of the myofiber in the presence of the nerve when the original endplate was removed. In regenerated myofibers, the density of α-BuTX-binding sites fell within the range of densities observed in uninjured muscle whether postsynaptic differentiation occurred at the site of the original endplate in the absence of the nerve or at an originally ectopic position of the regenerated myofiber. In addition, the distribution of α-BuTX-binding sites within the regenerated postsynaptic regions closely resembled the distribution of apha-BuTX- binding sites in uninjured muscle. Morphometric analysis was performed on postsynaptic structures formed at the site of the original endplate in the absence of the nerve or at an ectopic position of the regenerated myofiber by interaction of the nerve and muscle. Although variation in the depth of the primary cleft occurred, there was little difference between the overall structure of regenerated postsynaptic structures and that of endplates of uninjured muscles.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bader D. Reinnervation of motor endplate-containing and motor endplate-less muscle grafts. Dev Biol. 1980 Jun 15;77(2):315–327. doi: 10.1016/0012-1606(80)90477-7. [DOI] [PubMed] [Google Scholar]
  2. Barnard E. A., Wieckowski J., Chiu T. H. Cholinergic receptor molecules and cholinesterase molecules at mouse skeletal muscle junctions. Nature. 1971 Nov 26;234(5326):207–209. doi: 10.1038/234207a0. [DOI] [PubMed] [Google Scholar]
  3. Bennett M. R., Florin T., Woog R. The formation of synapses in regenerating mammalian striated muscle. J Physiol. 1974 Apr;238(1):79–92. doi: 10.1113/jphysiol.1974.sp010511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bennett M. R., Pettigrew A. G. The formation of neuromuscular synapses. Cold Spring Harb Symp Quant Biol. 1976;40:409–424. doi: 10.1101/sqb.1976.040.01.039. [DOI] [PubMed] [Google Scholar]
  5. Berg D. K., Kelly R. B., Sargent P. B., Williamson P., Hall Z. W. Binding of -bungarotoxin to acetylcholine receptors in mammalian muscle (snake venom-denervated muscle-neonatal muscle-rat diaphragm-SDS-polyacrylamide gel electrophoresis). Proc Natl Acad Sci U S A. 1972 Jan;69(1):147–151. doi: 10.1073/pnas.69.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burden S. J., Sargent P. B., McMahan U. J. Acetylcholine receptors in regenerating muscle accumulate at original synaptic sites in the absence of the nerve. J Cell Biol. 1979 Aug;82(2):412–425. doi: 10.1083/jcb.82.2.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Calson B. M., Wagner K. R., Max S. R. Reinnervation of rat extensor digitorum longus muscles after free grafting. Muscle Nerve. 1979 Jul-Aug;2(4):304–307. doi: 10.1002/mus.880020411. [DOI] [PubMed] [Google Scholar]
  8. Carlson B. M. A quantitative study of muscle fiber survival and regeneration in normal, predenervated, and Marcaine-treated free muscle grafts in the rat. Exp Neurol. 1976 Sep;52(3):421–432. doi: 10.1016/0014-4886(76)90214-4. [DOI] [PubMed] [Google Scholar]
  9. Carlson B. M. The regeneration of skeletal muscle. A review. Am J Anat. 1973 Jun;137(2):119–149. doi: 10.1002/aja.1001370202. [DOI] [PubMed] [Google Scholar]
  10. Fambrough D. M. Control of acetylcholine receptors in skeletal muscle. Physiol Rev. 1979 Jan;59(1):165–227. doi: 10.1152/physrev.1979.59.1.165. [DOI] [PubMed] [Google Scholar]
  11. Fambrough D. M., Drachman D. B., Satyamurti S. Neuromuscular junction in myasthenia gravis: decreased acetylcholine receptors. Science. 1973 Oct 19;182(4109):293–295. doi: 10.1126/science.182.4109.293. [DOI] [PubMed] [Google Scholar]
  12. Fambrough D. M., Hartzell H. C. Acetylcholine receptors: number and distribution at neuromuscular junctions in rat diaphragm. Science. 1972 Apr 14;176(4031):189–191. doi: 10.1126/science.176.4031.189. [DOI] [PubMed] [Google Scholar]
  13. Fertuck H. C., Salpeter M. M. Quantitation of junctional and extrajunctional acetylcholine receptors by electron microscope autoradiography after 125I-alpha-bungarotoxin binding at mouse neuromuscular junctions. J Cell Biol. 1976 Apr;69(1):144–158. doi: 10.1083/jcb.69.1.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fertuck H. C., Salpeter M. M. Sensitivity in electron microscope autoradiography for 125I. J Histochem Cytochem. 1974 Feb;22(2):80–87. doi: 10.1177/22.2.80. [DOI] [PubMed] [Google Scholar]
  15. Frank E., Gautvik K., Sommerschild H. Persistence of junctional acetylcholine receptors following denervation. Cold Spring Harb Symp Quant Biol. 1976;40:275–281. doi: 10.1101/sqb.1976.040.01.028. [DOI] [PubMed] [Google Scholar]
  16. Frank E., Jansen J. K., Lomo T., Westgaard R. H. The interaction between foreign and original motor nerves innervating the soleus muscle of rats. J Physiol. 1975 Jun;247(3):725–743. doi: 10.1113/jphysiol.1975.sp010954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gutmann E., Hanzlíková V. Effects of accessory nerve supply to muscle achieved by implantation into muscle during regeneration of its nerve. Physiol Bohemoslov. 1967;16(3):244–250. [PubMed] [Google Scholar]
  19. Jansen J. K., Van Essen D. C., Brown M. C. Formation and elimination of synapses in skeletal muscles of rat. Cold Spring Harb Symp Quant Biol. 1976;40:425–434. doi: 10.1101/sqb.1976.040.01.040. [DOI] [PubMed] [Google Scholar]
  20. KARNOVSKY M. J. THE LOCALIZATION OF CHOLINESTERASE ACTIVITY IN RAT CARDIAC MUSCLE BY ELECTRON MICROSCOPY. J Cell Biol. 1964 Nov;23:217–232. doi: 10.1083/jcb.23.2.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Katz B., Miledi R. The statistical nature of the acetycholine potential and its molecular components. J Physiol. 1972 Aug;224(3):665–699. doi: 10.1113/jphysiol.1972.sp009918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Korneliussen H., Sommerschild H. Ultrastructure of the new neuromuscular junctions formed during reinnervation of rat soleus muscle by a "foreign" nerve. Cell Tissue Res. 1976 Apr 9;167(4):439–452. doi: 10.1007/BF00215176. [DOI] [PubMed] [Google Scholar]
  23. Kuffler S. W., Yoshikami D. The distribution of acetylcholine sensitivity at the post-synaptic membrane of vertebrate skeletal twitch muscles: iontophoretic mapping in the micron range. J Physiol. 1975 Jan;244(3):703–730. doi: 10.1113/jphysiol.1975.sp010821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Loring R. H., Salpeter M. M. Denervation increases turnover rate of junctional acetylcholine receptors. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2293–2297. doi: 10.1073/pnas.77.4.2293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lømo T., Slater C. R. Control of acetylcholine sensitivity and synapse formation by muscle activity. J Physiol. 1978 Feb;275:391–402. doi: 10.1113/jphysiol.1978.sp012196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Marshall L. M., Sanes J. R., McMahan U. J. Reinnervation of original synaptic sites on muscle fiber basement membrane after disruption of the muscle cells. Proc Natl Acad Sci U S A. 1977 Jul;74(7):3073–3077. doi: 10.1073/pnas.74.7.3073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Matthews-Bellinger J., Salpeter M. M. Distribution of acetylcholine receptors at frog neuromuscular junctions with a discussion of some physiological implications. J Physiol. 1978 Jun;279:197–213. doi: 10.1113/jphysiol.1978.sp012340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Miledi R., Potter L. T. Acetylcholine receptors in muscle fibres. Nature. 1971 Oct 29;233(5322):599–603. doi: 10.1038/233599a0. [DOI] [PubMed] [Google Scholar]
  29. Padykula H. A., Gauthier G. F. The ultrastructure of the neuromuscular junctions of mammalian red, white, and intermediate skeletal muscle fibers. J Cell Biol. 1970 Jul;46(1):27–41. doi: 10.1083/jcb.46.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Porter C. W., Barnard E. A., Chiu T. H. The ultrastructural localization and quantitation of cholinergic receptors at the mouse motor endplate. J Membr Biol. 1973;14(4):383–402. doi: 10.1007/BF01868086. [DOI] [PubMed] [Google Scholar]
  31. Porter C. W., Barnard E. A. Distribution and density of cholinergic receptors at the motor endplates of a denervated mouse muscle. Exp Neurol. 1975 Sep;48(3 Pt 1):542–556. doi: 10.1016/0014-4886(75)90012-6. [DOI] [PubMed] [Google Scholar]
  32. Sanes J. R., Marshall L. M., McMahan U. J. Reinnervation of muscle fiber basal lamina after removal of myofibers. Differentiation of regenerating axons at original synaptic sites. J Cell Biol. 1978 Jul;78(1):176–198. doi: 10.1083/jcb.78.1.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Vracko R., Benditt E. P. Basal lamina: the scaffold for orderly cell replacement. Observations on regeneration of injured skeletal muscle fibers and capillaries. J Cell Biol. 1972 Nov;55(2):406–419. doi: 10.1083/jcb.55.2.406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Waerhaug O., Korneliussen H., Sommerschild H. Morphology of motor nerve terminals on rat soleus muscle fibers reinnervated by the original and by a "foreign" nerve. Anat Embryol (Berl) 1977 Aug 9;151(1):1–15. doi: 10.1007/BF00315293. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES