Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Apr 1;89(1):62–69. doi: 10.1083/jcb.89.1.62

Analytical study of microsomes and isolated subcellular membranes from rat liver. VII. Distribution of protein-bound sialic acid

PMCID: PMC2111768  PMID: 7228901

Abstract

Detailed investigations by quantitative centrifugal fractionation were conducted to determine the subcellular distribution of protein-bound sialic acid in rat liver. Homogenates obtained from perfused livers were fractionated by differential centrifugation into nuclear fraction, large granules, microsomes, and final supernate fraction, or were used to isolate membrane preparations enriched in either plasma membranes or Golgi complex elements. Large granule fractions, microsome fractions, and plasma membrane preparations were subfractionated by density equilibration in linear gradients of sucrose. In some experiments, microsomes or plasma membrane preparations were treated with digitonin before isopycnic centrifugation to better distinguish subcellular elements related to the plasma membrane or the Golgi complex from the other cell components; in other experiments, large granule fractions were obtained from Triton WR-1339-loaded livers, which effectively resolve lysosomes from mitochondria and peroxisomes in density gradient analysis. Protein-bound sialic acid and marker enzymes were assayed in the various subcellular fractions. The distributions obtained show that sialoglycoprotein is restricted to some particular domains of the cell, which include the plasma membrane, phagolysosomes, and possibly the Golgi complex. Although sialoglycoprotein is largely recovered in the microsome fraction, it has not been detected in the endoplasmic reticulum-derived elements of this subcellular fraction. In addition, it has not been detected either in mitochondria or in peroxisomes. Because the sialyltransferase activities are associated with the Golgi complex, the cytoplasm appears compartmentalized into components which biogenetically involve the Golgi apparatus and components which do not.

Full Text

The Full Text of this article is available as a PDF (863.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amar-Costesec A., Beaufay H., Wibo M., Thinès-Sempoux D., Feytmans E., Robbi M., Berthet J. Analytical study of microsomes and isolated subcellular membranes from rat liver. II. Preparation and composition of the microsomal fraction. J Cell Biol. 1974 Apr;61(1):201–212. doi: 10.1083/jcb.61.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amar-Costesec A., Wibo M., Thinès-Sempoux D., Beaufay H., Berthet J. Analytical study of microsomes and isolated subcellular membranes from rat liver. IV. Biochemical, physical, and morphological modifications of microsomal components induced by digitonin, EDTA, and pyrophosphate. J Cell Biol. 1974 Sep;62(3):717–745. doi: 10.1083/jcb.62.3.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Appelkvist E. L., Dallner G. Localization of protein-bound carbohydrate residues on the cytoplasmic surface of rough and smooth microsomes and Golgi vesicles from rat liver. Biochim Biophys Acta. 1978 Oct 19;513(1):173–178. doi: 10.1016/0005-2736(78)90121-9. [DOI] [PubMed] [Google Scholar]
  4. Arsenis C., Touster O. Purification and properties of an acid nucleotidase from rat liver lysosomes. J Biol Chem. 1968 Nov 10;243(21):5702–5708. [PubMed] [Google Scholar]
  5. Autuori F., Svensson H., Dallner G. Biogenesis of microsomal membrane glycoproteins in rat liver. I. Presence of glycoproteins in microsomes and cytosol. J Cell Biol. 1975 Dec;67(3):687–699. doi: 10.1083/jcb.67.3.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beaufay H., Amar-Costesec A., Thinès-Sempoux D., Wibo M., Robbi M., Berthet J. Analytical study of microsomes and isolated subcellular membranes from rat liver. 3. Subfractionation of the microsomal fraction by isopycnic and differential centrifugation in density gradients. J Cell Biol. 1974 Apr;61(1):213–231. doi: 10.1083/jcb.61.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Beaufay H., Jacques P., Baudhuin P., Sellinger O. Z., Berthet J., De Duve C. Tissue fractionation studies. 18. Resolution of mitochondrial fractions from rat liver into three distinct populations of cytoplasmic particles by means of density equilibration in various gradients. Biochem J. 1964 Jul;92(1):184–205. doi: 10.1042/bj0920184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bergman A., Dallner G. Localization of newly synthesized glycoproteins in the membrane of the rough endoplasmic reticulum of rat liver. FEBS Lett. 1977 Oct 15;82(2):359–362. doi: 10.1016/0014-5793(77)80621-2. [DOI] [PubMed] [Google Scholar]
  9. Bosmann H. B., Myers M. W., Dehond D., Ball R., Case K. R. Mitochondrial autonomy. Sialic acid residues on the surface of isolated rat cerebral cortex and liver mitochondria. J Cell Biol. 1972 Oct;55(1):147–160. doi: 10.1083/jcb.55.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. De Duve C. Tissue fractionation. Past and present. J Cell Biol. 1971 Jul;50(1):20d–55d. [PubMed] [Google Scholar]
  11. DePierre J. W., Karnovsky M. L. Plasma membranes of mammalian cells: a review of methods for their characterization and isolation. J Cell Biol. 1973 Feb;56(2):275–303. doi: 10.1083/jcb.56.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. EMMELOT P., BOS C. J., BENEDETTI E. L., RUEMKE P. STUDIES ON PLASMA MEMBRANES. I. CHEMICAL COMPOSITION AND ENZYME CONTENT OF PLASMA MEMBRANES ISOLATED FROM RAT LIVER. Biochim Biophys Acta. 1964 Jul 15;90:126–145. doi: 10.1016/0304-4165(64)90125-4. [DOI] [PubMed] [Google Scholar]
  13. Harms E., Kreisel W., Morris H. P., Reutter W. Biosynthesis of N-acetylneuraminic acid in Morris hepatomas. Eur J Biochem. 1973 Jan 15;32(2):254–262. doi: 10.1111/j.1432-1033.1973.tb02605.x. [DOI] [PubMed] [Google Scholar]
  14. Helgeland L., Christensen T. B., Janson T. L. The distribution of protein-bound carbohydrates in submicrosomal fractions from rat liver. Biochim Biophys Acta. 1972 Nov 24;286(1):62–71. doi: 10.1016/0304-4165(72)90088-8. [DOI] [PubMed] [Google Scholar]
  15. Henning R., Kaulen H. D., Stoffel W. Biochemical analysis of the pinocytotic process. I. Isolation and chemical composition of the lysosomal and the plasma membrane of the rat liver cell. Hoppe Seylers Z Physiol Chem. 1970 Oct;351(10):1191–1199. doi: 10.1515/bchm2.1970.351.2.1191. [DOI] [PubMed] [Google Scholar]
  16. Kashnig D. M., Kasper C. B. Isolation, morphology, and composition of the nuclear membrane from rat liver. J Biol Chem. 1969 Jul 25;244(14):3786–3792. [PubMed] [Google Scholar]
  17. Kawasaki T., Yamashina I. Isolation and characterization of glycopeptides from rat liver nuclear membrane. J Biochem. 1972 Dec;72(6):1517–1525. doi: 10.1093/oxfordjournals.jbchem.a130043. [DOI] [PubMed] [Google Scholar]
  18. Larsén C., Dallner G., Ernster L. Association of sialic acid with microsomal membrane structures in rat liver. Biochem Biophys Res Commun. 1972 Dec 4;49(5):1300–1306. doi: 10.1016/0006-291x(72)90608-0. [DOI] [PubMed] [Google Scholar]
  19. Lawford G. R., Schachter H. Biosynthesis of glycoprotein by liver. The incorporation in vivo of 14C-glucosamine into protein-bound hexosamine and sialic acid of rat liver subcellular fractions. J Biol Chem. 1966 Nov 25;241(22):5408–5418. [PubMed] [Google Scholar]
  20. Leighton F., Poole B., Beaufay H., Baudhuin P., Coffey J. W., Fowler S., De Duve C. The large-scale separation of peroxisomes, mitochondria, and lysosomes from the livers of rats injected with triton WR-1339. Improved isolation procedures, automated analysis, biochemical and morphological properties of fractions. J Cell Biol. 1968 May;37(2):482–513. doi: 10.1083/jcb.37.2.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Li Y. T., Li S. C., Shetlar M. R. Carbohydrate content in subcellular fractions of rat liver and of Walker 256 carcinosarcoma. Cancer Res. 1965 Sep;25(8):1225–1231. [PubMed] [Google Scholar]
  22. MACBETH R. A., BEKESI J. G. TISSUE GLYCOPROTEINS IN RATS BEARING WALKER 256 CARCINOMA. Cancer Res. 1964 May;24:614–618. [PubMed] [Google Scholar]
  23. Miyajima N., Tomikawa M., Kawasaki T., Yamashina I. Chemical composition of membranous fractions of rat liver microsomes. J Biochem. 1969 Nov;66(5):711–732. [PubMed] [Google Scholar]
  24. Morre J., Merlin L. M., Keenan T. W. Localization of glycosyl transferase activities in a Golgi apparatus-rich fraction isolated from rat liver. Biochem Biophys Res Commun. 1969 Nov 20;37(5):813–819. doi: 10.1016/0006-291x(69)90964-4. [DOI] [PubMed] [Google Scholar]
  25. PATTERSON M. K., Jr, TOUSTER O. Intracellular distribution of sialic acid and its relationship to membranes. Biochim Biophys Acta. 1962 Jan 29;56:626–628. doi: 10.1016/0006-3002(62)90623-6. [DOI] [PubMed] [Google Scholar]
  26. Ray T. K. A modified method for the isolation of the plasma membrane from rat liver. Biochim Biophys Acta. 1970 Jan 6;196(1):1–9. doi: 10.1016/0005-2736(70)90159-8. [DOI] [PubMed] [Google Scholar]
  27. Rodriguez Boulan E., Kreibich G., Sabatini D. D. Spatial orientation of glycoproteins in membranes of rat liver rough microsomes. I. Localization of lectin-binding sites in microsomal membranes. J Cell Biol. 1978 Sep;78(3):874–893. doi: 10.1083/jcb.78.3.874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schachter H., Jabbal I., Hudgin R. L., Pinteric L., McGuire E. J., Roseman S. Intracellular localization of liver sugar nucleotide glycoprotein glycosyltransferases in a Golgi-rich fraction. J Biol Chem. 1970 Mar 10;245(5):1090–1100. [PubMed] [Google Scholar]
  29. Schneider Y. J., Tulkens P., de Duve C., Trouet A. Fate of plasma membrane during endocytosis. II. Evidence for recycling (shuttle) of plasma membrane constituents. J Cell Biol. 1979 Aug;82(2):466–474. doi: 10.1083/jcb.82.2.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sottocasa G. L., Sandri G., Panfili E., De Bernard B. A glycoprotein located in the intermembrane space of rat liver mitochondria. FEBS Lett. 1971 Sep 15;17(1):100–105. doi: 10.1016/0014-5793(71)80574-4. [DOI] [PubMed] [Google Scholar]
  31. Steinman R. M., Brodie S. E., Cohn Z. A. Membrane flow during pinocytosis. A stereologic analysis. J Cell Biol. 1976 Mar;68(3):665–687. doi: 10.1083/jcb.68.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Thines-Sempoux D., Amar-Costesec A., Beaufay H., Berthet J. The association of cholesterol, 5'-nucleotidase, and alkaline phosphodiesterase I with a distinct group of microsomal particles. J Cell Biol. 1969 Oct;43(1):189–192. doi: 10.1083/jcb.43.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Touster O., Aronson N. N., Jr, Dulaney J. T., Hendrickson H. Isolation of rat liver plasma membranes. Use of nucleotide pyrophosphatase and phosphodiesterase I as marker enzymes. J Cell Biol. 1970 Dec;47(3):604–618. doi: 10.1083/jcb.47.3.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]
  35. WURTMAN R. J., AXELROD J. A SENSITIVE AND SPECIFIC ASSAY FOR THE ESTIMATION OF MONOAMINE OXIDASE. Biochem Pharmacol. 1963 Dec;12:1439–1441. doi: 10.1016/0006-2952(63)90215-6. [DOI] [PubMed] [Google Scholar]
  36. Winzler R. J. Carbohydrates in cell surfaces. Int Rev Cytol. 1970;29:77–125. doi: 10.1016/s0074-7696(08)60033-9. [DOI] [PubMed] [Google Scholar]
  37. de Bernard B., Pugliarello M. C., Sandri G., Sottocasa G. L., Vittur F. Glycoprotein components, sialic acid and hexosamines, bound to inner and outer mitochondrial membranes. FEBS Lett. 1971 Jan 12;12(3):125–128. doi: 10.1016/0014-5793(71)80049-2. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES