Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Apr 1;89(1):131–139. doi: 10.1083/jcb.89.1.131

Vesicular transport of cationized ferritin by the epithelium of the rat choroid plexus

PMCID: PMC2111774  PMID: 7228898

Abstract

We have studied the transport of ferritin that was internalized by coated micropinocytic vesicles at the apical surface of the choroid plexus epithelium in situ. After ventriculocisternal perfusion of native ferritin (NF) or cationized ferritin (CF), three routes followed by the tracers are revealed: (a) to lysosomes, (b) to cisternal compartments, and (c) to the basolateral cell surface. (a) NF is micropinocytosed to a very limited degree and appears in a few lysosomal elements whereas CF is taken up in large amounts and can be followed, via endocytic vacuoles and light multivesicular bodies, to dark multivesicular bodies and dense bodies. (b) Occasionally, CF particles are found in cisterns that may represent GERL or trans-Golgi elements, whereas stacked Golgi cisterns never contain CF. (c) Transepithelial vesicular transport of CF is distinctly revealed. The intercellular spaces of the epithelium, below the apical tight junctions, contain numerous clusters of CF particles, often associated with surface-connected, coated vesicles. Vesicles in the process of exocytosis of CF are also present at the basal epithelial surface, whereas connective tissue elements below the epithelium are unlabeled. Our conclusion is that fluid and solutes removed from the cerebrospinal fluid by endocytosis either become sequestered in the lysosomal apparatus of the choroidal epithelium or are transported to the basolateral surface. However, our results do not indicate any significant recycling via Golgi complexes of internalized apical cell membrane.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker N. H., Almazon R. Evidence for the functional polarization of micropinocytotic vesicles in the rat choroid plexus. J Histochem Cytochem. 1968 Apr;16(4):278–280. doi: 10.1177/16.4.278. [DOI] [PubMed] [Google Scholar]
  2. Danon D., Goldstein L., Marikovsky Y., Skutelsky E. Use of cationized ferritin as a label of negative charges on cell surfaces. J Ultrastruct Res. 1972 Mar;38(5):500–510. doi: 10.1016/0022-5320(72)90087-1. [DOI] [PubMed] [Google Scholar]
  3. Denef J. F., Ekholm R. Membrane labeling with cationized ferritin in isolated thyroid follicles. J Ultrastruct Res. 1980 May;71(2):203–221. doi: 10.1016/s0022-5320(80)90107-0. [DOI] [PubMed] [Google Scholar]
  4. Deurs B. V. Horseradish peroxidase uptake into the rat choroid plexus epithelium, with special reference to the lysosomal system. J Ultrastruct Res. 1978 Feb;62(2):155–167. doi: 10.1016/s0022-5320(78)90029-1. [DOI] [PubMed] [Google Scholar]
  5. Deurs B. V. Microperoxidase uptake into the rat choroid plexus epithelium. J Ultrastruct Res. 1978 Feb;62(2):168–180. doi: 10.1016/s0022-5320(78)90030-8. [DOI] [PubMed] [Google Scholar]
  6. Farquhar M. G. Recovery of surface membrane in anterior pituitary cells. Variations in traffic detected with anionic and cationic ferritin. J Cell Biol. 1978 Jun;77(3):R35–R42. doi: 10.1083/jcb.77.3.r35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grinnell F., Tobleman M. Q., Hackenbrock C. R. The distribution and mobility of anionic sites on the surfaces of baby hamster kidney cells. J Cell Biol. 1975 Sep;66(3):470–479. doi: 10.1083/jcb.66.3.470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Herzog V., Miller F. Membrane retrieval in epithelial cells of isolated thyroid follicles. Eur J Cell Biol. 1979 Aug;19(3):203–215. [PubMed] [Google Scholar]
  9. Jorgensen O. S., Bock E., Bech P., Rafaelsen O. J. Synaptic membrane protein D2 in the cerebrospinal fluid of manic-melancholic patients. Acta Psychiatr Scand. 1977 Jul;56(1):50–56. doi: 10.1111/j.1600-0447.1977.tb06662.x. [DOI] [PubMed] [Google Scholar]
  10. Jorgensen O. S., Bock E. Brain specific synaptosomal membrane proteins demonstrated by crossed immunoelectrophoresis. J Neurochem. 1974 Oct;23(4):879–880. doi: 10.1111/j.1471-4159.1974.tb04419.x. [DOI] [PubMed] [Google Scholar]
  11. Jørgensen O. S., Møller M. Immunocytochemical demonstration of the D2 protein in the presynaptic complex. Brain Res. 1980 Aug 4;194(2):419–429. doi: 10.1016/0006-8993(80)91222-6. [DOI] [PubMed] [Google Scholar]
  12. Milhorat T. H., Mosher M. B., Hammock M. K., Murphy C. F. Evidence for choroid-pleux absorption in hydrocephalus. N Engl J Med. 1970 Aug 6;283(6):286–289. doi: 10.1056/NEJM197008062830604. [DOI] [PubMed] [Google Scholar]
  13. Moller M., Mollgård K., Lund-Andersen H., Hertz L. Concordance between morphological and biochemical estimates of fluid spaces in rat brain cortex slices. Exp Brain Res. 1974;21(3):299–314. doi: 10.1007/BF00235749. [DOI] [PubMed] [Google Scholar]
  14. PAPPENHEIMER J. R., HEISEY S. R., JORDAN E. F. Active transport of Diodrast and phenolsulfonphthalein from cerebrospinal fluid to blood. Am J Physiol. 1961 Jan;200:1–10. doi: 10.1152/ajplegacy.1961.200.1.1. [DOI] [PubMed] [Google Scholar]
  15. Quinton P. M., Wright E. M., Tormey J. M. Localization of sodium pumps in the choroid plexus epithelium. J Cell Biol. 1973 Sep;58(3):724–730. doi: 10.1083/jcb.58.3.724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Reeves W. H., Kanwar Y. S., Farquhar M. G. Assembly of the glomerular filtration surface. Differentiation of anionic sites in glomerular capillaries of newborn rat kidney. J Cell Biol. 1980 Jun;85(3):735–753. doi: 10.1083/jcb.85.3.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. SMITH D. E., STREICHER E., MILKOVIC K., KLATZO I. OBSERVATIONS ON THE TRANSPORT OF PROTEINS BY THE ISOLATED CHOROID PLEXUS. Acta Neuropathol. 1964 Mar 4;3:372–386. doi: 10.1007/BF00691845. [DOI] [PubMed] [Google Scholar]
  18. Skutelsky E., Danon D. Redistribution of surface anionic sites on the luminal front of blood vessel endothelium after interaction with polycationic ligand. J Cell Biol. 1976 Oct;71(1):232–241. doi: 10.1083/jcb.71.1.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Skutelsky E., Hardy B. Regeneration of plasmalemma and surface properties in macrophages. Exp Cell Res. 1976 Sep;101(2):337–345. doi: 10.1016/0014-4827(76)90386-4. [DOI] [PubMed] [Google Scholar]
  20. Walters I. N., Teychenne P. F., Claveria L. E., Calne D. B. Penicillin transport from cerebrospinal fluid. Neurology. 1976 Nov;26(11):1008–1010. doi: 10.1212/wnl.26.11.1008. [DOI] [PubMed] [Google Scholar]
  21. Welch K., Sadler K. Permeability of the choroid plexus of the rabbit to several solutes. Am J Physiol. 1966 Mar;210(3):652–660. doi: 10.1152/ajplegacy.1966.210.3.652. [DOI] [PubMed] [Google Scholar]
  22. Wright E. M. Mechanisms of ion transport across the choroid plexus. J Physiol. 1972 Oct;226(2):545–571. doi: 10.1113/jphysiol.1972.sp009997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. van Deurs B. Cell junctions in the endothelia and connective tissue of the rat choroid plexus. Anat Rec. 1979 Sep;195(1):73–94. doi: 10.1002/ar.1091950107. [DOI] [PubMed] [Google Scholar]
  24. van Deurs B., Koehler J. K. Tight junctions in the choroid plexus epithelium. A freeze-fracture study including complementary replicas. J Cell Biol. 1979 Mar;80(3):662–673. doi: 10.1083/jcb.80.3.662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. van Deurs B., Møller M., Amtorp O. Uptake of horseradish peroxidase from CSF into the choroid plexus of the rat, with special reference to transepithelial transport. Cell Tissue Res. 1978 Feb 24;187(2):215–234. doi: 10.1007/BF00224366. [DOI] [PubMed] [Google Scholar]
  26. van Deurs B. Structural aspects of brain barriers, with special reference to the permeability of the cerebral endothelium and choroidal epithelium. Int Rev Cytol. 1980;65:117–191. doi: 10.1016/s0074-7696(08)61960-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES