Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Jun 1;89(3):440–448. doi: 10.1083/jcb.89.3.440

Function of calmodulin in postsynaptic densities. II. Presence of a calmodulin- activatable protein kinase activity

DJ Grab, RK Carlin, P Siekevitz
PMCID: PMC2111785  PMID: 7251661

Abstract

Because the calmodulin in postsynaptic densities (PSDs) activates a cyclic nucleotide phosphodiesterase, we decided to explore the possibility that the PSD also contains a calmodulin-activatable protein kinase activity. As seen by autoradiographic analysis of coomassie blue-stained SDS polyacrylamide gels, many proteins in a native PSD preparation were phosphorylated in the presence of [γ-(32)P]ATP and Mg(2+) alone. Addition of Ca(2+) alone to the native PSD preparation had little or no effect on phosphorylation. However, upon addition of exogenous calmodulin there was a general increase in background phosphorylation with a statistically significant increase in the phosphorylation of two protein regions: 51,000 and 62,000 M(r). Similar results were also obtained in sonicated or freeze thawed native PSD preparations by addition of Ca(2+) alone without exogenous calmodulin, indicating that the calmodulin in the PSD can activate the kinase present under certain conditions. The calmodulin dependency of the reaction was further strengthened by the observed inhibition of the calmodulin-activatable phosphorylation, but not of the Mg(2+)-dependent activity, by the Ca(2+) chelator, EGTA, which also removes the calmodulin from the structure (26), and by the binding to calmodulin of the antipsychotic drug chlorpromazine in the presence of Ca(2+). In addition, when a calmodulin-deficient PSD preparation was prepared (26), sonicated, and incubated with [γ-(32)P]ATP, Mg(2+) and Ca(2+), one could not induce a Ca(2+)-stimulation of protein kinase activity unless exogenous calmodulin was added back to the system, indicating a reconstitution of calmodulin into the PSD. We have also attempted to identify the two major phosphorylated proteins. Based on SDS polyacrylamide gel electrophoresis, it appears that the major 51,000 M(r) PSD protein is the one that is phosphorylated and not the 51,000 M(r) component of brain intermediate filaments, which is a known PSD contaminant. In addition, papain digestion of the 51,000 M(r) protein revealed multiple phosphorylation sites different from those phosphorylated by the Mg(2+)-dependent kinase(s). Finally, although the calmodulin-activatable protein kinase may phosphorylate proteins I(a) and I(b), the cyclic AMP-dependent protein kinase, which definitely does phosphorylate protein I(a) and I(b) and is present in the PSD, does not phosphorylate the 51,000 and 62,000 M(r) proteins, because specific inhibition of this kinase has no effect on the levels of the phosphorylation of these latter two proteins.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashby C. D., Walsh D. A. Characterization of the interaction of a protein inhibitor with adenosine 3',5'-monophosphate-dependent protein kinases. I. Interaction with the catalytic subunit of the protein kinase. J Biol Chem. 1972 Oct 25;247(20):6637–6642. [PubMed] [Google Scholar]
  2. Blomberg F., Cohen R. S., Siekevitz P. The structure of postsynaptic densities isolated from dog cerebral cortex. II. Characterization and arrangement of some of the major proteins within the structure. J Cell Biol. 1977 Jul;74(1):204–225. doi: 10.1083/jcb.74.1.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cabral F., Gottesman M. M. Phosphorylation of the 10-nm filament protein from Chinese hamster ovary cells. J Biol Chem. 1979 Jul 25;254(14):6203–6206. [PubMed] [Google Scholar]
  4. Carlin R. K., Grab D. J., Cohen R. S., Siekevitz P. Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities. J Cell Biol. 1980 Sep;86(3):831–845. doi: 10.1083/jcb.86.3.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carlin R. K., Grab D. J., Siekevitz P. Function of a calmodulin in postsynaptic densities. III. Calmodulin-binding proteins of the postsynaptic density. J Cell Biol. 1981 Jun;89(3):449–455. doi: 10.1083/jcb.89.3.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carlin R. K., Grab D. J., Siekevitz P. The binding of radio-iodinated calmodulin to proteins on denaturing gels. Ann N Y Acad Sci. 1980;356:73–74. doi: 10.1111/j.1749-6632.1980.tb29600.x. [DOI] [PubMed] [Google Scholar]
  7. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  8. Cohen P., Burchell A., Foulkes J. G., Cohen P. T., Vanaman T. C., Nairn C. Identification of the Ca2+-dependent modulator protein as the fourth subunit of rabbit skeletal muscle phosphorylase kinase. FEBS Lett. 1978 Aug 15;92(2):287–293. doi: 10.1016/0014-5793(78)80772-8. [DOI] [PubMed] [Google Scholar]
  9. Cohen R. S., Blomberg F., Berzins K., Siekevitz P. The structure of postsynaptic densities isolated from dog cerebral cortex. I. Overall morphology and protein composition. J Cell Biol. 1977 Jul;74(1):181–203. doi: 10.1083/jcb.74.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dabrowska R., Aromatorio D., Sherry J. M., Hartshorne D. J. Composition of the myosin light chain kinase from chicken gizzard. Biochem Biophys Res Commun. 1977 Oct 24;78(4):1263–1272. doi: 10.1016/0006-291x(77)91429-2. [DOI] [PubMed] [Google Scholar]
  11. Dabrowska R., Sherry J. M., Aromatorio D. K., Hartshorne D. J. Modulator protein as a component of the myosin light chain kinase from chicken gizzard. Biochemistry. 1978 Jan 24;17(2):253–258. doi: 10.1021/bi00595a010. [DOI] [PubMed] [Google Scholar]
  12. DeLorenzo R. J., Freedman S. D., Yohe W. B., Maurer S. C. Stimulation of Ca2+-dependent neurotransmitter release and presynaptic nerve terminal protein phosphorylation by calmodulin and a calmodulin-like protein isolated from synaptic vesicles. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1838–1842. doi: 10.1073/pnas.76.4.1838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Eipper B. A. Rat brain tubulin and protein kinase activity. J Biol Chem. 1974 Mar 10;249(5):1398–1406. [PubMed] [Google Scholar]
  14. Embi N., Rylatt D. B., Cohen P. Glycogen synthase kinase-2 and phosphorylase kinase are the same enzyme. Eur J Biochem. 1979 Oct 15;100(2):339–347. doi: 10.1111/j.1432-1033.1979.tb04176.x. [DOI] [PubMed] [Google Scholar]
  15. Feit H., Kelly P., Cotman C. W. Identification of a protein related to tubulin in the postsynaptic density. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1047–1051. doi: 10.1073/pnas.74.3.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Feit H., Neudeck U., Shay J. Anomalous electrophoretic properties of brain filament protein subunits. Brain Res. 1977 Sep 16;133(2):341–349. doi: 10.1016/0006-8993(77)90769-7. [DOI] [PubMed] [Google Scholar]
  17. Forgue S. T., Dahl J. L. Rat brain tubulin: subunit heterogeneity and phosphorylation. J Neurochem. 1979 Mar;32(3):1015–1025. doi: 10.1111/j.1471-4159.1979.tb04588.x. [DOI] [PubMed] [Google Scholar]
  18. Forn J., Greengard P. Depolarizing agents and cyclic nucleotides regulate the phosphorylation of specific neuronal proteins in rat cerebral cortex slices. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5195–5199. doi: 10.1073/pnas.75.10.5195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gaskin F., Cantor C. R., Shelanski M. L. Biochemical studies on the in vitro assembly and disassembly of microtubules. Ann N Y Acad Sci. 1975 Jun 30;253:133–146. doi: 10.1111/j.1749-6632.1975.tb19197.x. [DOI] [PubMed] [Google Scholar]
  20. Gergely P., Castle A. G., Crawford N. Platelet phosphorylase kinase activity and its regulation by the calcium-dependent regulatory protein, calmodulin. Biochim Biophys Acta. 1980 Mar 14;612(1):50–55. doi: 10.1016/0005-2744(80)90277-6. [DOI] [PubMed] [Google Scholar]
  21. Goodman D. B., Rasmussen H., DiBella F., Guthrow C. E., Jr Cyclic adenosine 3':5'-monophosphate-stimulated phosphorylation of isolated neurotubule subunits. Proc Natl Acad Sci U S A. 1970 Oct;67(2):652–659. doi: 10.1073/pnas.67.2.652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Grab D. J., Berzins K., Cohen R. S., Siekevitz P. Presence of calmodulin in postsynaptic densities isolated from canine cerebral cortex. J Biol Chem. 1979 Sep 10;254(17):8690–8696. [PubMed] [Google Scholar]
  23. Grab D. J., Carlin R. K., Siekevitz P. Function of calmodulin in postsynaptic densities. I. Presence of a calmodulin-activatable cyclic nucleotide phosphodiesterase activity. J Cell Biol. 1981 Jun;89(3):433–439. doi: 10.1083/jcb.89.3.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Grab D. J., Carlin R. K., Siekevitz P. The presence and functions of calmodulin in the postsynaptic density. Ann N Y Acad Sci. 1980;356:55–72. doi: 10.1111/j.1749-6632.1980.tb29599.x. [DOI] [PubMed] [Google Scholar]
  25. Hathaway D. R., Adelstein R. S. Human platelet myosin light chain kinase requires the calcium-binding protein calmodulin for activity. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1653–1657. doi: 10.1073/pnas.76.4.1653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ikeda Y., Steiner M. Phosphylation and protein kinase activity of platelet tubulin. J Biol Chem. 1979 Jan 10;254(1):66–74. [PubMed] [Google Scholar]
  27. Kelly P. T., Cotman C. W. Synaptic proteins. Characterization of tubulin and actin and identification of a distinct postsynaptic density polypeptide. J Cell Biol. 1978 Oct;79(1):173–183. doi: 10.1083/jcb.79.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Krueger B. K., Forn J., Greengard P. Depolarization-induced phosphorylation of specific proteins, mediated by calcium ion influx, in rat brain synaptosomes. J Biol Chem. 1977 Apr 25;252(8):2764–2773. [PubMed] [Google Scholar]
  29. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  30. Levin R. M., Weiss B. Mechanism by which psychotropic drugs inhibit adenosine cyclic 3',5'-monophosphate phosphodiesterase of brain. Mol Pharmacol. 1976 Jul;12(4):581–589. [PubMed] [Google Scholar]
  31. Liem R. K., Yen S. H., Salomon G. D., Shelanski M. L. Intermediate filaments in nervous tissues. J Cell Biol. 1978 Dec;79(3):637–645. doi: 10.1083/jcb.79.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Matus A. I., Taff-Jones D. H. Morphology and molecular composition of isolated postsynaptic junctional structures. Proc R Soc Lond B Biol Sci. 1978 Dec 4;203(1151):135–151. doi: 10.1098/rspb.1978.0097. [DOI] [PubMed] [Google Scholar]
  33. Matus A., Pehling G., Ackermann M., Maeder J. Brain postsynaptic densities: the relationship to glial and neuronal filaments. J Cell Biol. 1980 Nov;87(2 Pt 1):346–359. doi: 10.1083/jcb.87.2.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nairn A. C., Perry S. V. Calmodulin and myosin light-chain kinase of rabbit fast skeletal muscle. Biochem J. 1979 Apr 1;179(1):89–97. doi: 10.1042/bj1790089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Neville D. M., Jr Molecular weight determination of protein-dodecyl sulfate complexes by gel electrophoresis in a discontinuous buffer system. J Biol Chem. 1971 Oct 25;246(20):6328–6334. [PubMed] [Google Scholar]
  36. Ng M., Matus A. Long duration phosphorylation of synaptic membrane proteins. Neuroscience. 1979;4(9):1265–1274. doi: 10.1016/0306-4522(79)90156-8. [DOI] [PubMed] [Google Scholar]
  37. Ng M., Matus A. Protein phosphorylation in isolated plasma membranes and postsynaptic junctional structures from brain synapses. Neuroscience. 1979;4(1):169–180. doi: 10.1016/0306-4522(79)90226-4. [DOI] [PubMed] [Google Scholar]
  38. O'Connor C. M., Balzer D. R., Jr, Lazarides E. Phosphorylation of subunit proteins of intermediate filaments from chicken muscle and nonmuscle cells. Proc Natl Acad Sci U S A. 1979 Feb;76(2):819–823. doi: 10.1073/pnas.76.2.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Pant H. C., Shecket G., Gainer H., Lasek R. J. Neurofilament protein is phosphorylated in the squid giant axon. J Cell Biol. 1978 Aug;78(2):R23–R27. doi: 10.1083/jcb.78.2.r23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Pires E. M., Perry S. V. Purification and properties of myosin light-chain kinase from fast skeletal muscle. Biochem J. 1977 Oct 1;167(1):137–146. doi: 10.1042/bj1670137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rappaport L., Leterrier J. F., Virion A., Nunez J., Osty J. Phosphorylation of microtubule-associated proteins. Eur J Biochem. 1976 Mar 1;62(3):539–549. doi: 10.1111/j.1432-1033.1976.tb10188.x. [DOI] [PubMed] [Google Scholar]
  42. Rasmussen H., Goodman D. B. Relationships between calcium and cyclic nucleotides in cell activation. Physiol Rev. 1977 Jul;57(3):421–509. doi: 10.1152/physrev.1977.57.3.421. [DOI] [PubMed] [Google Scholar]
  43. Schulman H., Greengard P. Stimulation of brain membrane protein phosphorylation by calcium and an endogenous heat-stable protein. Nature. 1978 Feb 2;271(5644):478–479. doi: 10.1038/271478a0. [DOI] [PubMed] [Google Scholar]
  44. Shenolikar S., Cohen P. T., Cohen P., Nairn A. C., Perry S. V. The role of calmodulin in the structure and regulation of phosphorylase kinase from rabbit skeletal muscle. Eur J Biochem. 1979 Oct 15;100(2):329–337. doi: 10.1111/j.1432-1033.1979.tb04175.x. [DOI] [PubMed] [Google Scholar]
  45. Singh H., Spritz N. Protein kinases associated with peripheral nerve myelin. 1. Phosphorylation of endogenous myelin proteins and exogenous substrates. Biochim Biophys Acta. 1976 Oct 5;448(2):325–337. doi: 10.1016/0005-2736(76)90246-7. [DOI] [PubMed] [Google Scholar]
  46. Sloboda R. D., Rudolph S. A., Rosenbaum J. L., Greengard P. Cyclic AMP-dependent endogenous phosphorylation of a microtubule-associated protein. Proc Natl Acad Sci U S A. 1975 Jan;72(1):177–181. doi: 10.1073/pnas.72.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Srivastava A. K., Waisman D. M., Brostrom C. O., Soderling T. R. Stimulation of glycogen synthase phosphorylation by calcium-dependent regulator protein. J Biol Chem. 1979 Feb 10;254(3):583–586. [PubMed] [Google Scholar]
  48. Ueda T., Greengard P., Berzins K., Cohen R. S., Blomberg F., Grab D. J., Siekevitz P. Subcellular distribution in cerebral cortex of two proteins phosphorylated by a cAMP-dependent protein kinase. J Cell Biol. 1979 Nov;83(2 Pt 1):308–319. doi: 10.1083/jcb.83.2.308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Waisman D. M., Singh T. J., Wang J. H. The modulator-dependent protein kinase. A multifunctional protein kinase activatable by the Ca2+-dependent modulator protein of the cyclic nucleotide system. J Biol Chem. 1978 May 25;253(10):3387–3390. [PubMed] [Google Scholar]
  50. Walsh M. P., Vallet B., Autric F., Demaille J. G. Purification and characterization of bovine cardiac calmodulin-dependent myosin light chain kinase. J Biol Chem. 1979 Dec 10;254(23):12136–12144. [PubMed] [Google Scholar]
  51. Walsh M. P., Vallet B., Cavadore J. C., Demaille J. G. Homologous calcium-binding proteins in the activation of skeletal, cardiac, and smooth muscle myosin light chain kinases. J Biol Chem. 1980 Jan 25;255(2):335–337. [PubMed] [Google Scholar]
  52. Watterson D. M., Harrelson W. G., Jr, Keller P. M., Sharief F., Vanaman T. C. Structural similarities between the Ca2+-dependent regulatory proteins of 3':5'-cyclic nucleotide phosphodiesterase and actomyosin ATPase. J Biol Chem. 1976 Aug 10;251(15):4501–4513. [PubMed] [Google Scholar]
  53. Yagi K., Yazawa M., Kakiuchi S., Ohshima M., Uenishi K. Identification of an activator protein for myosin light chain kinase as the Ca2+-dependent modulator protein. J Biol Chem. 1978 Mar 10;253(5):1338–1340. [PubMed] [Google Scholar]
  54. Yamauchi T., Fujisawa H. Most of the Ca2+-dependent endogenous phosphorylation of rat brain cytosol proteins requires Ca2+-dependent regulation protein. Biochem Biophys Res Commun. 1979 Oct 29;90(4):1172–1178. doi: 10.1016/0006-291x(79)91160-4. [DOI] [PubMed] [Google Scholar]
  55. Yazawa M., Kuwayama H., Yagi K. Modulator protein as a Ca2+-dependent activator of rabbit skeletal myosin light-chain kinase. Purification and characterization. J Biochem. 1978 Nov;84(5):1253–1258. doi: 10.1093/oxfordjournals.jbchem.a132243. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES