Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Jun 1;89(3):495–509. doi: 10.1083/jcb.89.3.495

Ciliary reversal without rotation of axonemal structures in ctenophore comb plates

PMCID: PMC2111786  PMID: 6114102

Abstract

We have used a newly discovered reversal response of ctenophore comb plates to investigate the structural mechanisms controlling the direction of ciliary bending. High K+ concentrations cause cydippid larvae of the ctenophore Pleurobrachia to swim backward. High-speed cine films of backward-swimming animals show a 180 degree reversal in beat direction of the comb plates. Ion substitution and blocking experiments with artificial seawaters demonstrate that ciliary reversal is a Ca++-dependent response. Comb plate cilia possess unique morphological markers for numbering specific outer-doublet microtubules and identifying the sidedness of the central pair. Comb plates of forward- and backward-swimming ctenophores were frozen in different stages of the beat cycle by an "instantaneous fixation" method. Analysis of transverse and longitudinal sections of instantaneously fixed cilia showed that the assembly of outer doublets does not twist during ciliary reversal. This directly confirms the existence of radial switching mechanism regulating the sequence of active sliding on opposite sides of the axoneme. We also found that the axis of the central pair always remains perpendicular to the plane of bending; more importantly, the ultrastructural marker showed that the central pair does not rotate during a 180 degree reversal in beat direction. Thus, the orientation of the central pair does not control the direction of ciliary bending (i.e., the pattern of active sliding around the axoneme). We discuss the validity of this finding for three-dimensional as well as two-dimensional ciliary beat cycles and conclude that models of central-pair function based on correlative data alone must now be re- examined in light of these new findings on causal relations.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AFZELIUS B. A. The fine structure of the cilia from ctenophore swimming-plates. J Biophys Biochem Cytol. 1961 Feb;9:383–394. doi: 10.1083/jcb.9.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bessen M., Fay R. B., Witman G. B. Calcium control of waveform in isolated flagellar axonemes of Chlamydomonas. J Cell Biol. 1980 Aug;86(2):446–455. doi: 10.1083/jcb.86.2.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brokaw C. J., Josslin R., Bobrow L. Calcium ion regulation of flagellar beat symmetry in reactivated sea urchin spermatozoa. Biochem Biophys Res Commun. 1974 Jun 4;58(3):795–800. doi: 10.1016/s0006-291x(74)80487-0. [DOI] [PubMed] [Google Scholar]
  4. Doughty M. J. Control of ciliary activity in paramecium--IV. Ca2+ modification of Mg2+ dependent dynein ATPase activity. Comp Biochem Physiol B. 1979;64(3):255–266. doi: 10.1016/0305-0491(79)90140-8. [DOI] [PubMed] [Google Scholar]
  5. Eckert R., Brehm P. Ionic mechanisms of excitation in Paramecium. Annu Rev Biophys Bioeng. 1979;8:353–383. doi: 10.1146/annurev.bb.08.060179.002033. [DOI] [PubMed] [Google Scholar]
  6. Eckert R., Machemer H. Regulation of ciliary beating frequency by the surface membrane. Soc Gen Physiol Ser. 1975;30:151–164. [PubMed] [Google Scholar]
  7. GIBBONS I. R. The relationship between the fine structure and direction of beat in gill cilia of a lamellibranch mollusc. J Biophys Biochem Cytol. 1961 Oct;11:179–205. doi: 10.1083/jcb.11.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gibbons B. H., Gibbons I. R. Calcium-induced quiescence in reactivated sea urchin sperm. J Cell Biol. 1980 Jan;84(1):13–27. doi: 10.1083/jcb.84.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gibbons B. H., Gibbons I. R. The effect of partial extraction of dynein arms on the movement of reactivated sea-urchin sperm. J Cell Sci. 1973 Sep;13(2):337–357. doi: 10.1242/jcs.13.2.337. [DOI] [PubMed] [Google Scholar]
  10. Gibbons B. H. Intermittent swimming in live sea urchin sperm. J Cell Biol. 1980 Jan;84(1):1–12. doi: 10.1083/jcb.84.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gibbons I. R. The molecular basis of flagellar motility in sea urchin spermatozoa. Soc Gen Physiol Ser. 1975;30:207–232. [PubMed] [Google Scholar]
  12. Hernandez-Nicaise M. L. The nervous system of ctenophores. III. Ultrastructure of synapses. J Neurocytol. 1973 Sep;2(3):249–263. doi: 10.1007/BF01104029. [DOI] [PubMed] [Google Scholar]
  13. Holwill M. E., Cohen H. J., Satir P. A sliding microtubule model incorporating axonemal twist and compatible with three-dimensional ciliary bending. J Exp Biol. 1979 Feb;78:265–280. doi: 10.1242/jeb.78.1.265. [DOI] [PubMed] [Google Scholar]
  14. Holwill M. E., McGregor J. L. Effects of calcium on flagellar movement in the trypanosome Crithidia oncopelti. J Exp Biol. 1976 Aug;65(1):229–242. doi: 10.1242/jeb.65.1.229. [DOI] [PubMed] [Google Scholar]
  15. Horridge G. A., Tamm S. L. Critical point drying for scanning electron microscopic sthdy of ciliary motion. Science. 1969 Feb 21;163(3869):817–818. doi: 10.1126/science.163.3869.817. [DOI] [PubMed] [Google Scholar]
  16. Hyams J. S., Borisy G. G. Isolated flagellar apparatus of Chlamydomonas: characterization of forward swimming and alteration of waveform and reversal of motion by calcium ions in vitro. J Cell Sci. 1978 Oct;33:235–253. doi: 10.1242/jcs.33.1.235. [DOI] [PubMed] [Google Scholar]
  17. Kung C., Chang S. Y., Satow Y., Houten J. V., Hansma H. Genetic dissection of behavior in paramecium. Science. 1975 May 30;188(4191):898–904. [PubMed] [Google Scholar]
  18. Machemer H. Motor activity and bioelectric control of cilia. Fortschr Zool. 1977;24(2-3):195–210. [PubMed] [Google Scholar]
  19. Naito Y., Kaneko H. Control of ciliary activities by adenosinetriphosphate and divalent cations in triton-extracted models of Paramecium caudatum. J Exp Biol. 1973 Jun;58(3):657–676. doi: 10.1242/jeb.58.3.657. [DOI] [PubMed] [Google Scholar]
  20. Ogawa K., Mohri T., Mohri H. Identification of dynein as the outer arms of sea urchin sperm axonemes. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5006–5010. doi: 10.1073/pnas.74.11.5006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Omoto C. K., Kung C. Rotation and twist of the central-pair microtubules in the cilia of Paramecium. J Cell Biol. 1980 Oct;87(1):33–46. doi: 10.1083/jcb.87.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Omoto C. K., Kung C. The pair of central tubules rotates during ciliary beat in Paramecium. Nature. 1979 Jun 7;279(5713):532–534. doi: 10.1038/279532a0. [DOI] [PubMed] [Google Scholar]
  23. Párducz B. Ciliary movement and coordination in ciliates. Int Rev Cytol. 1967;21:91–128. doi: 10.1016/s0074-7696(08)60812-8. [DOI] [PubMed] [Google Scholar]
  24. SATIR P. STUDIES ON CILIA. THE FIXATION OF THE METACHRONAL WAVE. J Cell Biol. 1963 Aug;18:345–365. doi: 10.1083/jcb.18.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sale W. S., Satir P. Direction of active sliding of microtubules in Tetrahymena cilia. Proc Natl Acad Sci U S A. 1977 May;74(5):2045–2049. doi: 10.1073/pnas.74.5.2045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Satir P., Sale W. S. Tails of Tetrahymena. J Protozool. 1977 Nov;24(4):498–501. doi: 10.1111/j.1550-7408.1977.tb00999.x. [DOI] [PubMed] [Google Scholar]
  27. Satir P. Studies on cilia. 3. Further studies on the cilium tip and a "sliding filament" model of ciliary motility. J Cell Biol. 1968 Oct;39(1):77–94. doi: 10.1083/jcb.39.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schmidt J. A., Eckert R. Calcium couples flagellar reversal to photostimulation in Chlamydomonas reinhardtii. Nature. 1976 Aug 19;262(5570):713–715. doi: 10.1038/262713a0. [DOI] [PubMed] [Google Scholar]
  29. Summers K. E., Gibbons I. R. Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3092–3096. doi: 10.1073/pnas.68.12.3092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tamm S. L. Cillary motion in Paramecium. A scanning electron microscope study. J Cell Biol. 1972 Oct;55(1):250–255. doi: 10.1083/jcb.55.1.250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wais-Steider J., Satir P. Effect of vanadate on gill cilia: switching mechanism in ciliary beat. J Supramol Struct. 1979;11(3):339–347. doi: 10.1002/jss.400110309. [DOI] [PubMed] [Google Scholar]
  32. Walter M. F., Satir P. Calcium control of ciliary arrest in mussel gill cells. J Cell Biol. 1978 Oct;79(1):110–120. doi: 10.1083/jcb.79.1.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Warner F. D., Mitchell D. R. Dynein: the mechanochemical coupling adenosine triphosphatase of microtubule-based sliding filament mechanisms. Int Rev Cytol. 1980;66:1–43. doi: 10.1016/s0074-7696(08)61970-1. [DOI] [PubMed] [Google Scholar]
  34. Warner F. D., Satir P. The structural basis of ciliary bend formation. Radial spoke positional changes accompanying microtubule sliding. J Cell Biol. 1974 Oct;63(1):35–63. doi: 10.1083/jcb.63.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Witman G. B., Plummer J., Sander G. Chlamydomonas flagellar mutants lacking radial spokes and central tubules. Structure, composition, and function of specific axonemal components. J Cell Biol. 1978 Mar;76(3):729–747. doi: 10.1083/jcb.76.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Woolley D. M. Evidence for "twisted plane" undulations in golden hamster sperm tails. J Cell Biol. 1977 Dec;75(3):851–865. doi: 10.1083/jcb.75.3.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zanetti N. C., Mitchell D. R., Warner F. D. Effects of divalent cations on dynein cross bridging and ciliary microtubule sliding. J Cell Biol. 1979 Mar;80(3):573–588. doi: 10.1083/jcb.80.3.573. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES