Abstract
Well-defined ferritin-conjugated lectins were used to map glycoconjugates on the surface of sprouting neurons from rat superior cervical ganglion (SCG) and spinal cord (SC). The cultured neurons were exposed to the markers and processed for electron microscopy, and the number of ferritin particles per unit area of plasmalemma was measured in three different regions: perikaryon, neuritic shaft, and growth cone. Three different binding patterns are observed for different lectin: equal receptor density throughout the plasmalemma of the growing neuron (e.g., Ricinus communis agglutinin I in SCG neurons), gradual decrease (e.g., wheat-germ agglutinin in SCG and SC neurons) and gradual increase (e.g., Ricinus communis agglutinin II in SC neurons) in the density of lectin receptors as one moves from the perikaryon to the growth cone. Furthermore, lectin receptor densities differ in the two types of neurons analyzed. We can conclude that the plasmalemma of the growth cone has biochemical properties different from those of the perikaryon, and that the neuron's structural polarity is expressed in its surface glycoconjugates. This phenomenon may be related to the growth cone's special functional properties and to the process of expansion of the plasma membrane.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bunge R. P., Wood P. Studies on the transplantation of spinal cord tissue in the rat. I. The development of a culture system for hemisections of embryonic spinal cord. Brain Res. 1973 Jul 27;57(2):261–276. doi: 10.1016/0006-8993(73)90135-2. [DOI] [PubMed] [Google Scholar]
- Haggis G. H. The iron oxide core of the ferritin molecule. J Mol Biol. 1965 Dec;14(2):598–602. doi: 10.1016/s0022-2836(65)80210-8. [DOI] [PubMed] [Google Scholar]
- Hatten M. E., Schachner M., Sidman R. L. Histochemical characterization of lectin binding in mouse cerebellum. Neuroscience. 1979;4(7):921–935. doi: 10.1016/0306-4522(79)90176-3. [DOI] [PubMed] [Google Scholar]
- Hatten M. E., Sidman R. L. Plant lectins detect age and region specific differences in cell surface carbohydrates and cell reassociation behavior of embryonic mouse cerebellar cells. J Supramol Struct. 1977;7(2):267–275. doi: 10.1002/jss.400070210. [DOI] [PubMed] [Google Scholar]
- Hubbard A. L., Cohn Z. A. The enzymatic iodination of the red cell membrane. J Cell Biol. 1972 Nov;55(2):390–405. doi: 10.1083/jcb.55.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kabat E. A. Dimensions and specificities of recognition sites on lectins and antibodies. J Supramol Struct. 1978;8(1):79–88. doi: 10.1002/jss.400080107. [DOI] [PubMed] [Google Scholar]
- Maylié-Pfenninger M. F., Jamieson J. D. Distribution of cell surface saccharides on pancreatic cells. I. General method for preparation and purification of lectins and lectin-ferritin conjugates. J Cell Biol. 1979 Jan;80(1):69–76. doi: 10.1083/jcb.80.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maylié-Pfenninger M. F., Jamieson J. D. Distribution of cell surface saccharides on pancreatic cells. II. Lectin-labeling patterns on mature guinea pig and rat pancreatic cells. J Cell Biol. 1979 Jan;80(1):77–95. doi: 10.1083/jcb.80.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pfenninger K. H., Bunge R. P. Freeze-fracturing of nerve growth cones and young fibers. A study of developing plasma membrane. J Cell Biol. 1974 Oct;63(1):180–196. doi: 10.1083/jcb.63.1.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pfenninger K. H., Maylié-Pfenninger M. F. Lectin labeling of sprouting neurons. II. Relative movement and appearance of glycoconjugates during plasmalemmal expansion. J Cell Biol. 1981 Jun;89(3):547–559. doi: 10.1083/jcb.89.3.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pfenninger K. H. Organization of neuronal membranes. Annu Rev Neurosci. 1978;1:445–471. doi: 10.1146/annurev.ne.01.030178.002305. [DOI] [PubMed] [Google Scholar]
