Abstract
Attached to the basal bodies of Naegleria gruberi flagellates is a striated rootlet or rhizoplast. The rootlet-basal body complex has been isolated by Triton X-100 lysis of deflagellated cells and differential centrifugation through a 25% glycerol medium. Rootlets isolated from mature flagellates are approximately 13 micrometers long but vary from 8 to 15 micrometers in length: they taper at both ends from a maximum width of approximately 0.25 micrometers in the vicinity of the basal bodies. They are highly stable during isolation but can be solubilized by urea, high salt, low pH, or detergent (Sarkosyl). Partial dissociation of rootlets with 1 M urea reveals that they are composed of filaments, approximately 5 nm diameter, associated in a linear fashion to yield the characteristic 21-nm cross-banded appearance. Differential solubilization of rootlets and their associated contaminants allowed identification of a major rootlet protein, comprising at least 50% of any purified rootlet preparation, with an apparent subunit molecular weight of 170,000. The localization of rootlets in situ by indirect immunofluorescence using a specific antibody directed against the purified rootlet protein demonstrated unequivocally that this 170,000-dalton protein is an organelle component.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amos W. B., Grimstone A. V., Rothschild L. J., Allen R. D. Structure, protein composition and birefringence of the costa: a motile flagellar root fibre in the flagellate Trichomonas. J Cell Sci. 1979 Feb;35:139–164. doi: 10.1242/jcs.35.1.139. [DOI] [PubMed] [Google Scholar]
- Dingle A. D. Control of flagellum number in Naegleria. Temperature shock induction of multiflagellate cells. J Cell Sci. 1970 Sep;7(2):463–481. doi: 10.1242/jcs.7.2.463. [DOI] [PubMed] [Google Scholar]
- Dingle A. D., Fulton C. Development of the flagellar apparatus of Naegleria. J Cell Biol. 1966 Oct;31(1):43–54. doi: 10.1083/jcb.31.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flood P. R. Ciliary rootlet-fibres as tail fin-rays in larval amphioxus(Branchiostoma lanceolatum, Pallas). J Ultrastruct Res. 1975 May;51(2):218–225. doi: 10.1016/s0022-5320(75)80149-3. [DOI] [PubMed] [Google Scholar]
- Fulton C. Cell differentiation in Naegleria gruberi. Annu Rev Microbiol. 1977;31:597–629. doi: 10.1146/annurev.mi.31.100177.003121. [DOI] [PubMed] [Google Scholar]
- Fulton C., Dingle A. D. Appearance of the flagellate phenotype in populations of Naegleria amebae. Dev Biol. 1967 Feb;15(2):165–191. doi: 10.1016/0012-1606(67)90012-7. [DOI] [PubMed] [Google Scholar]
- Fulton C., Dingle A. D. Basal bodies, but not centrioles, in Naegleria. J Cell Biol. 1971 Dec;51(3):826–836. doi: 10.1083/jcb.51.3.826. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GIBBONS I. R. The relationship between the fine structure and direction of beat in gill cilia of a lamellibranch mollusc. J Biophys Biochem Cytol. 1961 Oct;11:179–205. doi: 10.1083/jcb.11.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hufnagel L. A. Cortical ultrastructure of Paramecium aurelia. Studies on isolated pellicles. J Cell Biol. 1969 Mar;40(3):779–801. doi: 10.1083/jcb.40.3.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hyams J. S., Borisy G. G. Flagellar coordination in Chlamydomonas reinhardtii: isolation and reactivation of the flagellar apparatus. Science. 1975 Sep 12;189(4206):891–893. doi: 10.1126/science.1098148. [DOI] [PubMed] [Google Scholar]
- Katz K. R., McLean R. J. Rhizoplast and rootlet system of the flagellar apparatus of Chlamydomonas moewusii. J Cell Sci. 1979 Oct;39:373–381. doi: 10.1242/jcs.39.1.373. [DOI] [PubMed] [Google Scholar]
- Kowit J. D., Fulton C. Purification and properties of flagellar outer doublet tubulin from Naegleria gruberi and a radioimmune assay for tubulin. J Biol Chem. 1974 Jun 10;249(11):3638–3646. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Matsusaka T. ATPase activity in the ciliary rootlet of human retinal rods. J Cell Biol. 1967 Apr;33(1):203–208. doi: 10.1083/jcb.33.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olson G. E., Rattner J. B. Observations on the substructure of ciliary rootlets. J Ultrastruct Res. 1975 Jun;51(3):409–417. doi: 10.1016/s0022-5320(75)80104-3. [DOI] [PubMed] [Google Scholar]
- Rubin R. W., Cunningham W. P. Partial purification and phosphotungstate solubilization of basal bodies and kinetodesmal fibers from Tetrahymena pyriformis. J Cell Biol. 1973 Jun;57(3):601–612. doi: 10.1083/jcb.57.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHUSTER F. AN ELECTRON MICROSCOPE STUDY OF THE AMOEBO-FLAGELLATE, NAEGLERIA GRUBERI (SCHARDINGER). I. THE AMOEBOID AND FLAGELLATE STAGES. J Protozool. 1963 Aug;10:297–313. doi: 10.1111/j.1550-7408.1963.tb01681.x. [DOI] [PubMed] [Google Scholar]
- Salisbury J. L., Floyd G. L. Calcium-induced contraction of the rhizoplast of a quadriflagellate green alga. Science. 1978 Dec 1;202(4371):975–977. doi: 10.1126/science.202.4371.975. [DOI] [PubMed] [Google Scholar]
- Simpson P. A., Dingle A. D. Variable periodicity in the rhizoplast of Naegleria flagellates. J Cell Biol. 1971 Oct;51(1):323–328. doi: 10.1083/jcb.51.1.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephens R. E. High-resolution preparative SDS-polyacrylamide gel electrophoresis: fluorescent visualization and electrophoretic elution-concentration of protein bands. Anal Biochem. 1975 May 12;65(1-2):369–379. doi: 10.1016/0003-2697(75)90521-7. [DOI] [PubMed] [Google Scholar]
- Stephens R. E. The basal apparatus. Mass isolation from the molluscan ciliated gill epithelium and a preliminary characterization of striated rootlets. J Cell Biol. 1975 Feb;64(2):408–420. doi: 10.1083/jcb.64.2.408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
- Williams N. E., Vaudaux P. E., Skriver L. Cytoskeletal proteins of the cell surface in Tetrahymena I. Identification and localization of major proteins. Exp Cell Res. 1979 Oct 15;123(2):311–320. doi: 10.1016/0014-4827(79)90473-7. [DOI] [PubMed] [Google Scholar]