Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Jun 1;89(3):406–417. doi: 10.1083/jcb.89.3.406

Immunochemical identity of peroxisomal enoyl-CoA hydratase with the peroxisome-proliferation -associated 80,000 mol wt polypeptide in rat liver

MK Reddy, SA Qreshi, PF Hollenberg, JK Reddy
PMCID: PMC2111799  PMID: 6788778

Abstract

Peroxisome proliferators, which induce proliferation of hepatic peroxisomes, have been shown previously to cause a marked increase in an 80,000 mol wt polypeptide predominantly in the light mitochondrial and microsomal fractions of liver of rodents. We now present evidence to show that this hepatic peroxisome-proliferation-associated polypeptide, referred to as polypeptide PPA-80, is immunochemically identical with the multifunctional peroxisome protein displaying heat-labile enoyl-CoA hydratase activity. This conclusion is based on the following observations: (a) the purified polypeptide PPA-80 and the heat- labile enoyl-CoA hydratase from livers of rats treated with the peroxisome proliferators Wy-14,643 {[4-chloro-6(2,3-xylidino)-2-pyrimidinylthio]acetic acid} exhibit identical minimum molecular weights of approximately 80,000 on SDS polyacrylamide gel electrophoresis; (b) these two proteins are immunochemically identical on the basis of ouchterlony double diffusion, immunotitration, rocket immunoelectrophoresis, and crossed immunoelectrophoresis analysis; and (c) the immunoprecipitates formed by antibodies to polypeptide PPA-80 when dissociated on a sephadex G-200 column yield enoyl-CoA hydratase activity. Whether the polypeptide PPA-80 exhibits the activity of other enzyme(s) of the peroxisomal β-oxidation system such as fatty acyl-CoA oxidase activity or displays immunochemical identity with such enzymes remains to be determined. The availability of antibodies to polypeptide PPA-80 and enoyl-CoA hydratase facilitated immunofluorescent and immunocytochemical localization of the polypeptide PPA- 80 and enoyl-CoA hydratase in the rat liver. The indirect immunofluorescent studies with these antibodies provided direct visual evidence for the marked induction of polypeptide PPA-80 and enoyl-CoA hydratase in the livers of rats treated with Wy-14,643. The present studies also provide immunocytochemical evidence for the localization of polypeptide PPA- 80 and the heat-labile enoyl-CoA hydratase in the peroxisome, but not in the mitochondria, of hepatic parenchymal cells. These studies, therefore, provide morphological evidence for the existence of fatty acyl-CoA oxidizing system in peroxisomes. An increase of polypeptide PPA-80 on SDS polyacrylamide gel electrophoretic analysis of the subcellular fractions of liver of rodents treated with lipid-lowering drugs should serve as a reliable and sensitive indicator of enhanced peroxisomal β- oxidation system.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avrameas S., Ternynck T. Peroxidase labelled antibody and Fab conjugates with enhanced intracellular penetration. Immunochemistry. 1971 Dec;8(12):1175–1179. doi: 10.1016/0019-2791(71)90395-8. [DOI] [PubMed] [Google Scholar]
  2. Chua N. H., Blomberg F. Immunochemical studies of thylakoid membrane polypeptides from spinach and Chlamydomonas reinhardtii. A modified procedure for crossed immunoelectrophoresis of dodecyl sulfate.protein complexes. J Biol Chem. 1979 Jan 10;254(1):215–223. [PubMed] [Google Scholar]
  3. Converse C. A., Papermaster D. S. Membrane protein analysis by two-dimensional immunoelectrophoresis. Science. 1975 Aug 8;189(4201):469–472. doi: 10.1126/science.1154021. [DOI] [PubMed] [Google Scholar]
  4. DE DUVE C., PRESSMAN B. C., GIANETTO R., WATTIAUX R., APPELMANS F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 1955 Aug;60(4):604–617. doi: 10.1042/bj0600604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Frevert J., Kindl H. A bifunctional enzyme from glyoxysomes. Purification of a protein possessing enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase activities. Eur J Biochem. 1980;107(1):79–86. doi: 10.1111/j.1432-1033.1980.tb04627.x. [DOI] [PubMed] [Google Scholar]
  6. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  7. Hajra A. K., Burke C. L., Jones C. L. Subcellular localization of acyl coenzyme A: dihydroxyacetone phosphate acyltransferase in rat liver peroxisomes (microbodies). J Biol Chem. 1979 Nov 10;254(21):10896–10900. [PubMed] [Google Scholar]
  8. Hüttinger M., Goldenberg H., Kramar R. A characteristic membrane protein of liver peroxisomes inducible by clofibrate. Biochim Biophys Acta. 1979 Dec 4;558(2):251–254. doi: 10.1016/0005-2736(79)90065-8. [DOI] [PubMed] [Google Scholar]
  9. Inestrosa N. C., Bronfman M., Leighton F. Detection of peroxisomal fatty acyl-coenzyme A oxidase activity. Biochem J. 1979 Sep 15;182(3):779–788. doi: 10.1042/bj1820779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Inestrosa N. C., Bronfman M., Leighton F. Purification of the peroxisomal fatty acyl-CoA oxidase from rat liver. Biochem Biophys Res Commun. 1980 Jul 16;95(1):7–12. doi: 10.1016/0006-291x(80)90696-8. [DOI] [PubMed] [Google Scholar]
  11. Ishii H., Suga T. Clofibrate-like effects of acetylsalicylic acid on peroxisomes and on hepatic and serum triglyceride levels. Biochem Pharmacol. 1979 Sep 15;28(18):2829–2833. doi: 10.1016/0006-2952(79)90568-9. [DOI] [PubMed] [Google Scholar]
  12. Kurup C. K., Aithal H. N., Ramasarma T. Increase of hepatic mitochondria on administration of ethyl alpha-p-chlorophenoxyisobutyrate to the rat. Biochem J. 1970 Mar;116(5):773–779. doi: 10.1042/bj1160773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Lazarow P. B., De Duve C. A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2043–2046. doi: 10.1073/pnas.73.6.2043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lazarow P. B. Rat liver peroxisomes catalyze the beta oxidation of fatty acids. J Biol Chem. 1978 Mar 10;253(5):1522–1528. [PubMed] [Google Scholar]
  17. Lazarow P. B. Three hypolipidemic drugs increase hepatic palmitoyl-coenzyme A oxidation in the rat. Science. 1977 Aug 5;197(4303):580–581. doi: 10.1126/science.195342. [DOI] [PubMed] [Google Scholar]
  18. Leighton F., Coloma L., Koenig C. Structure, composition, physical properties, and turnover of proliferated peroxisomes. A study of the trophic effects of Su-13437 on rat liver. J Cell Biol. 1975 Nov;67(2PT1):281–309. doi: 10.1083/jcb.67.2.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Levin W., Lu A. Y., Thomas P. E., Ryan D., Kizer D. E., Griffin M. J. Identification of epoxide hydrase as the preneoplastic antigen in rat liver hyperplastic nodules. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3240–3243. doi: 10.1073/pnas.75.7.3240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mannaerts G. P., Debeer L. J., Thomas J., De Schepper P. J. Mitochondrial and peroxisomal fatty acid oxidation in liver homogenates and isolated hepatocytes from control and clofibrate-treated rats. J Biol Chem. 1979 Jun 10;254(11):4585–4595. [PubMed] [Google Scholar]
  21. Markwell M. A., McGroarty E. J., Bieber L. L., Tolbert N. E. The subcellular distribution of carnitine acyltransferases in mammalian liver and kidney. A new peroxisomal enzyme. J Biol Chem. 1973 May 25;248(10):3426–3432. [PubMed] [Google Scholar]
  22. Miyazawa S., Osumi T., Hashimoto T. The presence of a new 3-oxoacyl-CoA thiolase in rat liver peroxisomes. Eur J Biochem. 1980 Feb;103(3):589–596. doi: 10.1111/j.1432-1033.1980.tb05984.x. [DOI] [PubMed] [Google Scholar]
  23. Moody D. E., Reddy J. K. Increase in hepatic carnitine acetyltransferase activity associated with peroxisomal (microbody) proliferation induced by the hypolipidemic drugs clofibrate, nafenopin, and methyl clofenapate. Res Commun Chem Pathol Pharmacol. 1974 Nov;9(3):501–510. [PubMed] [Google Scholar]
  24. Moody D. E., Reddy J. K. Morphometric analysis of the ultrastructural changes in rat liver induced by the peroxisome proliferator SaH 42-348. J Cell Biol. 1976 Dec;71(3):768–780. doi: 10.1083/jcb.71.3.768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Novikoff A. B. DAB cytochemistry: artifact problems in its current uses. J Histochem Cytochem. 1980 Sep;28(9):1036–1038. doi: 10.1177/28.9.7410815. [DOI] [PubMed] [Google Scholar]
  26. Novikoff A. B., Goldfischer S. Visualization of peroxisomes (microbodies) and mitochondria with diaminobenzidine. J Histochem Cytochem. 1969 Oct;17(10):675–680. doi: 10.1177/17.10.675. [DOI] [PubMed] [Google Scholar]
  27. Novikoff A. B., Novikoff P. M., Stockert R. J., Becker F. F., Yam A., Poruchynsky M. S., Levin W., Thomas P. E. Immunocytochemical localization of epoxide hydrase in hyperplastic nodules induced in rat liver by 2-acetylaminofluorene. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5207–5211. doi: 10.1073/pnas.76.10.5207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Osumi T., Hashimoto T. Occurrence of two 3-hydroxyacyl-CoA dehydrogenases in rat liver. Biochim Biophys Acta. 1979 Aug 30;574(2):258–267. [PubMed] [Google Scholar]
  29. Osumi T., Hashimoto T. Peroxisomal beta oxidation system of rat liver. Copurification of enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase. Biochem Biophys Res Commun. 1979 Jul 27;89(2):580–584. doi: 10.1016/0006-291x(79)90669-7. [DOI] [PubMed] [Google Scholar]
  30. PORTER R. R. The hydrolysis of rabbit y-globulin and antibodies with crystalline papain. Biochem J. 1959 Sep;73:119–126. doi: 10.1042/bj0730119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pramanik A., Pawar S., Antonian E., Schulz H. Five different enzymatic activities are associated with the multienzyme complex of fatty acid oxidation from Escherichia coli. J Bacteriol. 1979 Jan;137(1):469–473. doi: 10.1128/jb.137.1.469-473.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Reddy J. K., Azarnoff D. L., Svoboda D. J., Prasad J. D. Nafenopin-induced hepatic microbody (peroxisome) proliferation and catalase synthesis in rats and mice. Absence of sex difference in response. J Cell Biol. 1974 May;61(2):344–358. doi: 10.1083/jcb.61.2.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Reddy J. K., Krishnakantha T. P. Hepatic peroxisome proliferation: induction by two novel compounds structurally unrelated to clofibrate. Science. 1975 Nov 21;190(4216):787–789. doi: 10.1126/science.1198095. [DOI] [PubMed] [Google Scholar]
  34. Reddy J. K., Kumar N. S. The peroxisome proliferation-associated polypeptide in rat liver. Biochem Biophys Res Commun. 1977 Aug 8;77(3):824–829. doi: 10.1016/s0006-291x(77)80052-1. [DOI] [PubMed] [Google Scholar]
  35. Reddy J. K., Moody D. E., Azarnoff D. L., Rao M. S. Hepatic catalase is not essential for the hypolipidemic action of peroxisome proliferators. Proc Soc Exp Biol Med. 1977 Apr;154(4):483–487. doi: 10.3181/00379727-154-39699. [DOI] [PubMed] [Google Scholar]
  36. Reddy J. K. Possible properties of microbodies (peroxisomes). Microbody proliferation and hypolipidemic drugs. J Histochem Cytochem. 1973 Nov;21(11):967–971. doi: 10.1177/21.11.967. [DOI] [PubMed] [Google Scholar]
  37. Reddy J. K., Rao M. S., Azarnoff D. L., Sell S. Mitogenic and carcinogenic effects of a hypolipidemic peroxisome proliferator, [4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio]acetic acid (Wy-14, 643), in rat and mouse liver. Cancer Res. 1979 Jan;39(1):152–161. [PubMed] [Google Scholar]
  38. Reddy J., Chiga M., Bunyaratvej S., Svoboda D. Microbodies in experimentally altered cells. VII. CPID-induced hepatic microbody proliferation in the absence of significant catalase synthesis. J Cell Biol. 1970 Jan;44(1):226–234. doi: 10.1083/jcb.44.1.226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Reddy J., Svoboda D. Microbodies in experimentally altered cells. 8. Continuities between microbodies and their possible biologic significance. Lab Invest. 1971 Jan;24(1):74–81. [PubMed] [Google Scholar]
  40. Reddy M. K., Hollenberg P. F., Reddy J. K. Partial purification and immunoreactivity of an 80 000-molecular-weight polypeptide associated with peroxisome proliferation in rat liver. Biochem J. 1980 Jun 15;188(3):731–740. doi: 10.1042/bj1880731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Steinman H. M., Hill R. L. Bovine liver crotonase (enoyl coenzyme A hydratase). EC 4.2.1.17 L-3-hydroxyacyl-CoA hydrolyase. Methods Enzymol. 1975;35:136–151. doi: 10.1016/0076-6879(75)35149-5. [DOI] [PubMed] [Google Scholar]
  42. Svoboda D. J. Unusual responses of rat hepatic and renal peroxisomes to RMI 14, 514, a new hypolipidemic agent. J Cell Biol. 1978 Sep;78(3):810–822. doi: 10.1083/jcb.78.3.810. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES