Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Jun 1;89(3):510–516. doi: 10.1083/jcb.89.3.510

Fluidity properties and liquid composition of erythrocyte membranes in Chediak-Higashi syndrome

PMCID: PMC2111801  PMID: 7251663

Abstract

We have earlier shown through electron spin resonance (ESR) studies of leukocytes that membranes of cells from both Chediak-Higashi syndrome (CHS) mice and humans have abnormally high fluidity. We have extended our studied to erythrocytes. Erythrocytes were labeled with the nitroxide-substituted analogue of stearic acid, 2-(3-carboxypropyl)-4,4- dimethyl-2-tridecyl-3-oxazolidinyloxyl, and ESR spectra were obtained. Order parameter, S, at 23 degrees C, was 0.661 and 0.653 for erythrocytes of normal and CHS mice (P less than 0.001). S was 0.684 for normal human erythrocytes and 0.675 (P less than 0.001) for CHS erythrocytes at 25 degrees C. Because S varies inversely to fluidity, these results indicate that CHS erythrocytes tend to have higher fluidity than normal. In vitro treatment of both mice and human CHS erythrocytes with 10 mM ascorbate returned their membrane fluidity to normal. We prepared erythrocyte ghosts and extracted them with CHCl3:CH3OH (2:1). Gas-liquid chromatography analysis showed a greater number of unsaturated fatty acids for CHS. The average number of double bonds detected in fatty acids for mice on a standard diet was 1.77 for normal and 2.02 for CHS (P less than 0.04); comparison of human erythrocytes from one normal control and one CHS patient showed a similar trend. Our results suggest that an increased proportion of unsaturated fatty acids may contribute to increased fluidity of CHS erythrocytes. Our observation that both leukocytes and erythrocytes of CHS have abnormal fluidity indicates that CHS pathophysiology may relate to a general membrane disorder.

Full Text

The Full Text of this article is available as a PDF (737.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABEL L. L., LEVY B. B., BRODIE B. B., KENDALL F. E. A simplified method for the estimation of total cholesterol in serum and demonstration of its specificity. J Biol Chem. 1952 Mar;195(1):357–366. [PubMed] [Google Scholar]
  2. Amar A., Rottem S., Razin S. Is the vertical disposition of Mycoplasma membrane proteins affected by membrane fluidity? Biochim Biophys Acta. 1979 Apr 19;552(3):457–467. doi: 10.1016/0005-2736(79)90190-1. [DOI] [PubMed] [Google Scholar]
  3. Blume R. S., Wolff S. M. The Chediak-Higashi syndrome: studies in four patients and a review of the literature. Medicine (Baltimore) 1972 Jul;51(4):247–280. [PubMed] [Google Scholar]
  4. Borochov H., Shinitzky M. Vertical displacement of membrane proteins mediated by changes in microviscosity. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4526–4530. doi: 10.1073/pnas.73.12.4526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boxer L. A., Watanabe A. M., Rister M., Besch H. R., Jr, Allen J., Baehner R. L. Correction of leukocyte function in Chediak-Higashi syndrome by ascorbate. N Engl J Med. 1976 Nov 4;295(19):1041–1045. doi: 10.1056/NEJM197611042951904. [DOI] [PubMed] [Google Scholar]
  6. Butterfield D. A., Chesnut D. B., Appel S. H., Roses A. D. Spin label study of erythrocyte membrane fluidity in myotonic and Duchenne muscular dystrophy and congenital myotonia. Nature. 1976 Sep 9;263(5573):159–161. doi: 10.1038/263159a0. [DOI] [PubMed] [Google Scholar]
  7. Butterfield D. A. Electron spin resonance investigations of membrane proteins in erythrocytes in muscle diseases. Duchenne and myotonic muscular dystrophy and congenital myotonia. Biochim Biophys Acta. 1977 Oct 3;470(1):1–7. doi: 10.1016/0005-2736(77)90056-6. [DOI] [PubMed] [Google Scholar]
  8. Butterfield D. A., Purdy M. J., Markesbery W. R. Electron spin resonance, hematological, and deformability studies of erythrocytes from patients with Huntington's disease. Biochim Biophys Acta. 1979 Mar 8;551(2):452–458. doi: 10.1016/0005-2736(89)90020-5. [DOI] [PubMed] [Google Scholar]
  9. Chalvardjian A., Rudnicki E. Determination of lipid phosphorus in the nanomolar range. Anal Biochem. 1970 Jul;36(1):225–226. doi: 10.1016/0003-2697(70)90352-0. [DOI] [PubMed] [Google Scholar]
  10. Clark R. A., Kimball H. R. Defective granulocyte chemotaxis in the Chediak-Higashi syndrome. J Clin Invest. 1971 Dec;50(12):2645–2652. doi: 10.1172/JCI106765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cooper R. A. Abnormalities of cell-membrane fluidity in the pathogenesis of disease. N Engl J Med. 1977 Aug 18;297(7):371–377. doi: 10.1056/NEJM197708182970707. [DOI] [PubMed] [Google Scholar]
  12. Cooper R. A., Durocher J. R., Leslie M. H. Decreased fluidity of red cell membrane lipids in abetalipoproteinemia. J Clin Invest. 1977 Jul;60(1):115–121. doi: 10.1172/JCI108747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dobretsov G. E., Borschevskaya T. A., Petrov V. A., Vladimirov Y. A. The increase of phospholipid bilayer rigidity after lipid peroxidation. FEBS Lett. 1977 Dec 1;84(1):125–128. doi: 10.1016/0014-5793(77)81071-5. [DOI] [PubMed] [Google Scholar]
  14. FARQUHAR J. W., AHRENS E. H., Jr Effects of dietary fats on human erythrocyte fatty acid patterns. J Clin Invest. 1963 May;42:675–685. doi: 10.1172/JCI104759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  16. Gaffney B. J. Fatty acid chain flexibility in the membranes of normal and transformed fibroblasts. Proc Natl Acad Sci U S A. 1975 Feb;72(2):664–668. doi: 10.1073/pnas.72.2.664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Haak R. A., Ingraham L. M., Baehner R. L., Boxer L. A. Membrane fluidity in human and mouse Chediak-Higashi leukocytes. J Clin Invest. 1979 Jul;64(1):138–144. doi: 10.1172/JCI109432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hirata F., Axelrod J. Enzymatic methylation of phosphatidylethanolamine increases erythrocyte membrane fluidity. Nature. 1978 Sep 21;275(5677):219–220. doi: 10.1038/275219a0. [DOI] [PubMed] [Google Scholar]
  19. Hong K., Hubbell W. L. Preparation and properties of phospholipid bilayers containing rhodopsin. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2617–2621. doi: 10.1073/pnas.69.9.2617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. KRITZLER R. A., TERNER J. Y., LINDENBAUM J., MAGIDSON J., WILLIAMS R., PRESIG R., PHILLIPS G. B. CHEDIAK-HIGASHI SYNDROME. CYTOLOGIC AND SERUM LIPID OBSERVATIONS IN A CASE AND FAMILY. Am J Med. 1964 Apr;36:583–594. doi: 10.1016/0002-9343(64)90106-8. [DOI] [PubMed] [Google Scholar]
  21. Kanfer J. N., Blume R. S., Yankee R. A., Wolff S. M. Alteration of sphingolipid metabolism in leukocytes from patients with the Chediak-Higashi syndrome. N Engl J Med. 1968 Aug 22;279(8):410–413. doi: 10.1056/NEJM196808222790806. [DOI] [PubMed] [Google Scholar]
  22. Kroes J., Ostwald R., Keith A. Erythrocyte membranes--compression of lipid phases by increased cholesterol content. Biochim Biophys Acta. 1972 Jul 3;274(1):71–74. doi: 10.1016/0005-2736(72)90281-7. [DOI] [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. Lucy J. A. The fusion of biological membranes. Nature. 1970 Aug 22;227(5260):815–817. doi: 10.1038/227815a0. [DOI] [PubMed] [Google Scholar]
  25. MORRISON W. R., SMITH L. M. PREPARATION OF FATTY ACID METHYL ESTERS AND DIMETHYLACETALS FROM LIPIDS WITH BORON FLUORIDE--METHANOL. J Lipid Res. 1964 Oct;5:600–608. [PubMed] [Google Scholar]
  26. Oliver J. M., Zurier R. B., Berlin R. D. Concanavalin a cap formation on polymorphonuclear leukocytes of normal and beige (chediak-higashi) mice. Nature. 1975 Feb 6;253(5491):471–473. doi: 10.1038/253471a0. [DOI] [PubMed] [Google Scholar]
  27. Peterkofsky B., Prather W. Cytotoxicity of ascorbate and other reducing agents towards cultured fibroblasts as a result of hydrogen peroxide formation. J Cell Physiol. 1977 Jan;90(1):61–70. doi: 10.1002/jcp.1040900109. [DOI] [PubMed] [Google Scholar]
  28. Prieur D. J., Collier L. L. Animal model of human disease: Chédiak-Higashi syndrome. Am J Pathol. 1978 Feb;90(2):533–536. [PMC free article] [PubMed] [Google Scholar]
  29. Prueitt J. L., Chi E. Y., Lagunoff D. Pulmonary surface-active materials in the Chediak-Higashi syndrome. J Lipid Res. 1978 May;19(4):410–415. [PubMed] [Google Scholar]
  30. Rausch P. G., Pryzwansky K. B., Spitznagel J. K. Immunocytochemical identification of azurophilic and specific granule markers in the giant granules of Chediak-Higashi neutrophils. N Engl J Med. 1978 Mar 30;298(13):693–698. doi: 10.1056/NEJM197803302981301. [DOI] [PubMed] [Google Scholar]
  31. Roeschlau P., Bernt E., Gruber W. Enzymatic determination of total cholesterol in serum. Z Klin Chem Klin Biochem. 1974 May;12(5):226–226. [PubMed] [Google Scholar]
  32. Rozenszajn L. A., David E. B., Sela S. B. Large granules and lysosomal fusion in human Chediak-Higashi white blood cells. Acta Haematol. 1977;57(5):279–289. doi: 10.1159/000207892. [DOI] [PubMed] [Google Scholar]
  33. Sato B., Nishikida K., Samuels L. T., Tyler F. H. Electron spin resonance studies of erythrocytes from patients with Duchenne muscular dystrophy. J Clin Invest. 1978 Feb;61(2):251–259. doi: 10.1172/JCI108934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schreier-Muccillo S., Butler K. W., Smith I. C. Structural requirements for the formation of ordered lipid multibilayers--a spin probe study. Arch Biochem Biophys. 1973 Nov;159(1):297–311. doi: 10.1016/0003-9861(73)90456-6. [DOI] [PubMed] [Google Scholar]
  35. Sinensky M. Adaptive alteration in phospholipid composition of plasma membranes from a somatic cell mutant defective in the regulation of cholesterol biosynthesis. J Cell Biol. 1980 Apr;85(1):166–169. doi: 10.1083/jcb.85.1.166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Skipski V. P., Peterson R. F., Barclay M. Quantitative analysis of phospholipids by thin-layer chromatography. Biochem J. 1964 Feb;90(2):374–378. doi: 10.1042/bj0900374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tsung P. K., Kegeles S. W., Becker E. L. The evidence for the existence of chymotrypsin-like esterase activity in the plasma membranes of rabbit neutrophils and the specific chemotactic peptide binding activity of the subcellular fractions. Biochim Biophys Acta. 1978 Jun 15;541(2):150–160. doi: 10.1016/0304-4165(78)90388-4. [DOI] [PubMed] [Google Scholar]
  38. Wilkerson L. S., Perkins R. C., Jr, Roelofs R., Swift L., Dalton L. R., Park J. H. Erythrocyte membrane abnormalities in Duchenne muscular dystrophy monitored by saturation transfer electron paramagnetic resonance spectroscopy. Proc Natl Acad Sci U S A. 1978 Feb;75(2):838–841. doi: 10.1073/pnas.75.2.838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Willinger M., Frankel F. R. Fate of surface proteins of rabbit polymorphonuclear leukocytes during phagocytosis. I. Identification of surface proteins. J Cell Biol. 1979 Jul;82(1):32–44. doi: 10.1083/jcb.82.1.32. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES