Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Jun 1;89(3):593–606. doi: 10.1083/jcb.89.3.593

Distribution of poly(A)-containing RNA during normal pollen development and during induced pollen embryogenesis in Hyoscyamus niger

PMCID: PMC2111802  PMID: 6166618

Abstract

The distribution of poly(A)-containing RNA [poly(A)+RNA] in pollen grains of Hyoscyamus niger during normal gametophytic development and embryogenic development induced by culture of anther segments was followed by in situ hybridization with [3H]-polyuridylic acid as a probe. No binding of the isotope occurred in pollen grains during the uninucleate phase of their development. Although [3H]polyuridylic acid binding sites were present in the generative and vegetative cells of maturing pollen grains, they almost completely disappeared from mature grains ready to germinate. During pollen germination, poly(A)+RNA formation was transient and was due to the activity of the generative nucleus, whereas the vegetative nucleus and the sperm cells failed to interact with the applied probe. In cultured anther segments, moderate amounts of poly(A)+RNA were detected in the uninucleate, nonvacuolate, embryogenically determined pollen grains. Poly(A)+RNA accumulation in these grains was sensitive to actinomycin D, suggesting that it represents newly transcribed mRNA. After the first haploid mitosis in the embryogenically determined pollen grains, only those grains in which the generative nucleus alone or along with the vegetative nucleus accumulated poly(A)+RNA in the surrounding cytoplasm were found to divide in the embryogenic pathway. Overall, the results suggest that, in contrast to normal gametophytic development, embryogenic development in the uninucleate pollen grains of cultured anther segments of H. niger is due to the transcriptional activation of an informational type of RNA. Subsequent divisions in the potentially embryogenic binucleate pollen grains appeared to be mediated by the continued synthesis of mRNA either in the generative nucleus or in both the generative and vegetative nuclei.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEERS R. F., Jr Hydrolysis of polyadenylic acid by pancreatic ribonuclease. J Biol Chem. 1960 Aug;235:2393–2398. [PubMed] [Google Scholar]
  2. Bishop J. O., Rosbash M. Polynucleotide sequences in eukaryotic DNA and RNA that form ribonuclease-resistant complexes with polyuridylic acid. J Mol Biol. 1974 May 5;85(1):75–86. doi: 10.1016/0022-2836(74)90130-2. [DOI] [PubMed] [Google Scholar]
  3. Blumenfled M., Forrest H. S. Is Drosophila dAT on the Y chromosome? Proc Natl Acad Sci U S A. 1971 Dec;68(12):3145–3149. doi: 10.1073/pnas.68.12.3145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brawerman G. Eukaryotic messenger RNA. Annu Rev Biochem. 1974;43(0):621–642. doi: 10.1146/annurev.bi.43.070174.003201. [DOI] [PubMed] [Google Scholar]
  5. Bultmann H., Laird C. D. Mitochondrial DNA from Drosophila melanogaster. Biochim Biophys Acta. 1973 Mar 19;299(2):196–209. doi: 10.1016/0005-2787(73)90342-0. [DOI] [PubMed] [Google Scholar]
  6. Capco D. G., Jeffery W. R. Differential distribution of poly(A)-containing RNA in the embryonic cells of Oncopeltus fasciatus. Analysis by in situ hybridization with a [3H]poly(U) probe. Dev Biol. 1978 Nov;67(1):137–151. doi: 10.1016/0012-1606(78)90305-6. [DOI] [PubMed] [Google Scholar]
  7. Capco D. G., Jeffery W. R. Origin and spatial distribution of maternal messenger RNA during oogenesis of an insect, Oncopeltus fasciatus. J Cell Sci. 1979 Oct;39:63–76. doi: 10.1242/jcs.39.1.63. [DOI] [PubMed] [Google Scholar]
  8. Carmichael G. G. Isolation of bacterial and phage proteins by homopolymer RNA-cellulose chromatography. J Biol Chem. 1975 Aug 10;250(15):6160–6167. [PubMed] [Google Scholar]
  9. Darnell F. E. mRNA structure and function. Prog Nucleic Acid Res Mol Biol. 1976;19:493–511. doi: 10.1016/s0079-6603(08)60941-1. [DOI] [PubMed] [Google Scholar]
  10. Darnell J. E., Wall R., Tushinski R. J. An adenylic acid-rich sequence in messenger RNA of HeLa cells and its possible relationship to reiterated sites in DNA. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1321–1325. doi: 10.1073/pnas.68.6.1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dolecki G. J., Duncan R. F., Humphreys T. Complete turnover of poly(A) on maternal mRNA of sea urchin embryos. Cell. 1977 Jun;11(2):339–344. doi: 10.1016/0092-8674(77)90050-2. [DOI] [PubMed] [Google Scholar]
  12. Fansler B. S., Travaglini E. C., Loeb L. A., Schultz J. Structure of Drosophila melanogaster dAT replicated in an in vitro system. Biochem Biophys Res Commun. 1970 Sep 30;40(6):1266–1272. doi: 10.1016/0006-291x(70)90003-3. [DOI] [PubMed] [Google Scholar]
  13. Flavell R. A., Van den Berg F. M., Grosveld G. C. Isolation and characterization of the oligo(dA-dT) clusters and their flanking DNA segments in the rabbit genome. J Mol Biol. 1977 Oct 5;115(4):715–735. doi: 10.1016/0022-2836(77)90111-5. [DOI] [PubMed] [Google Scholar]
  14. Jeffery W. R., Capco D. G. Differential accumulation and localization of maternal poly(A)-containing RNA during early development of the ascidian, Styela. Dev Biol. 1978 Nov;67(1):152–166. doi: 10.1016/0012-1606(78)90306-8. [DOI] [PubMed] [Google Scholar]
  15. Jones K. W., Bishop J. O., Brito-da-Cunha A. Complex formation between poly-r (U) and various chromosomal loci in Rhynchosciara. Chromosoma. 1973;43(4):375–390. doi: 10.1007/BF00406744. [DOI] [PubMed] [Google Scholar]
  16. Mascarenhas J. P., Bell E. RNA synthesis during development of the male gametophyte of Tradescantia. Dev Biol. 1970 Apr;21(4):475–490. doi: 10.1016/0012-1606(70)90073-4. [DOI] [PubMed] [Google Scholar]
  17. Pardue M. L., Gall J. G. Nucleic acid hybridization to the DNA of cytological preparations. Methods Cell Biol. 1975;10:1–16. doi: 10.1016/s0091-679x(08)60727-x. [DOI] [PubMed] [Google Scholar]
  18. Polan M. L., Friedman S., Gall J. G., Gehring W. Isolation and characterization of mitochondrial DNA from Drosophila melanogaster. J Cell Biol. 1973 Feb;56(2):580–589. doi: 10.1083/jcb.56.2.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Raghavan V. A transient accumulation of poly(A)-containing RNA in the tapetum of Hyoscyamus niger during microsporogenesis. Dev Biol. 1981 Jan 30;81(2):342–348. doi: 10.1016/0012-1606(81)90298-0. [DOI] [PubMed] [Google Scholar]
  20. Raghavan V. Patterns of DNA synthesis during pollen embryogenesis in henbane. J Cell Biol. 1977 May;73(2):521–526. doi: 10.1083/jcb.73.2.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Raghavan V. Role of the generative cell in androgenesis in henbane. Science. 1976 Jan 30;191(4225):388–389. doi: 10.1126/science.191.4225.388. [DOI] [PubMed] [Google Scholar]
  22. Riley M., Maling B. Physical and chemical characterization of two- and three-stranded adenine-thymine and adenine-uracil homopolymer complexes. J Mol Biol. 1966 Sep;20(2):359–389. doi: 10.1016/0022-2836(66)90069-6. [DOI] [PubMed] [Google Scholar]
  23. Sanger J. M., Jackson W. T. Fine structure study of pollen development in Haemanthus katherinae Baker. I. Formation of vegetative and generative cells. J Cell Sci. 1971 Mar;8(2):289–301. doi: 10.1242/jcs.8.2.289. [DOI] [PubMed] [Google Scholar]
  24. Shenkin A., Burdon R. H. Deoxyadenylate-rich and deoxyguanylate-rich regions in mammalian DNA. J Mol Biol. 1974 May 5;85(1):19–39. doi: 10.1016/0022-2836(74)90126-0. [DOI] [PubMed] [Google Scholar]
  25. Slater D. W., Slater I., Gillespie D. Post-fertilization synthesis of polyadenylic acid in sea urchin embryos. Nature. 1972 Dec 8;240(5380):333–337. doi: 10.1038/240333a0. [DOI] [PubMed] [Google Scholar]
  26. Steffensen D. M. Synthesis of ribosomal RNA during growth and division in Lilium. Exp Cell Res. 1966 Oct;44(1):1–12. doi: 10.1016/0014-4827(66)90407-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES