Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Jul 1;90(1):40–54. doi: 10.1083/jcb.90.1.40

Beginning of exocytosis captured by rapid-freezing of Limulus amebocytes

PMCID: PMC2111820  PMID: 7195907

Abstract

Structural changes underlying exocytosis evoked by the application of endotoxin to Limulus amebocytes were studied at the level of detail afforded by freeze-fracture and freeze-substitution techniques combined with the time resolution of direct rapid-freezing. The results with amebocytes prepared in this manner differed from those with other secretory cells prepared by conventional means. Exocytosis begins within seconds of endotoxin treatment when the plasmalemma invaginates to form pedestallike appositions with peripheral secretory granules. The juxtaposed membranes at these pedestal appositions form several punctate pentalaminar contacts, but examination of freeze-fractured pedestals failed to reveal any corresponding changes in the intramembrane particle distribution. Small secretory granule openings or pores, which are very infrequent, appear within the first 5 s after endotoxin treatment. These pores rapidly widen and this widening is immediately followed by the sequential dissolution of the granule contents, which then move into the surrounding extracellular space. Cytoplasmic filaments connecting the plasmalemma with the granule membrane are suitably deployed to be responsible for the plasmalemma invaginations. How pores begin is not certain, but the appearance of clear spaces between the granule core and the granule membrane at this point in exocytosis supports the possibility of a role of osmotic forces.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown S. S., Spudich J. A. Cytochalasin inhibits the rate of elongation of actin filament fragments. J Cell Biol. 1979 Dec;83(3):657–662. doi: 10.1083/jcb.83.3.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burwen S. J., Satir B. H. A freeze-fracture study of early membrane events during mast cell secretion. J Cell Biol. 1977 Jun;73(3):660–671. doi: 10.1083/jcb.73.3.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chandler D. E., Heuser J. E. Arrest of membrane fusion events in mast cells by quick-freezing. J Cell Biol. 1980 Aug;86(2):666–674. doi: 10.1083/jcb.86.2.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chandler D. E., Heuser J. Membrane fusion during secretion: cortical granule exocytosis in sex urchin eggs as studied by quick-freezing and freeze-fracture. J Cell Biol. 1979 Oct;83(1):91–108. doi: 10.1083/jcb.83.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chi E. Y., Lagunoff D., Koehler J. K. Freeze-fracture study of mast cell secretion. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2823–2827. doi: 10.1073/pnas.73.8.2823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cohen F. S., Zimmerberg J., Finkelstein A. Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. II. Incorporation of a vesicular membrane marker into the planar membrane. J Gen Physiol. 1980 Mar;75(3):251–270. doi: 10.1085/jgp.75.3.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Edwards W., Phillips J. H., Morris S. J. Structural changes in chromaffin granules induced by divalent cations. Biochim Biophys Acta. 1974 Jul 31;356(2):164–173. doi: 10.1016/0005-2736(74)90280-6. [DOI] [PubMed] [Google Scholar]
  8. Heuser J. E., Reese T. S., Dennis M. J., Jan Y., Jan L., Evans L. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol. 1979 May;81(2):275–300. doi: 10.1083/jcb.81.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Heuser J. E., Reese T. S., Landis D. M. Functional changes in frog neuromuscular junctions studied with freeze-fracture. J Neurocytol. 1974 Mar;3(1):109–131. doi: 10.1007/BF01111936. [DOI] [PubMed] [Google Scholar]
  10. Kalderon N., Gilula N. B. Membrane events involved in myoblast fusion. J Cell Biol. 1979 May;81(2):411–425. doi: 10.1083/jcb.81.2.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kletzien R. F., Perdue J. F., Springer A. Cytochalasin A and B. Inhibition of sugar uptake in cultured cells. J Biol Chem. 1972 May 10;247(9):2964–2966. [PubMed] [Google Scholar]
  12. LEVIN J., BANG F. B. A DESCRIPTION OF CELLULAR COAGULATION IN THE LIMULUS. Bull Johns Hopkins Hosp. 1964 Oct;115:337–345. [PubMed] [Google Scholar]
  13. LEVIN J., BANG F. B. THE ROLE OF ENDOTOXIN IN THE EXTRACELLULAR COAGULATION OF LIMULUS BLOOD. Bull Johns Hopkins Hosp. 1964 Sep;115:265–274. [PubMed] [Google Scholar]
  14. Lau A. L., Chan S. I. Nuclear magnetic resonance studies of the interaction of alamethicin with lecithin bilayers. Biochemistry. 1974 Nov 19;13(24):4942–4948. doi: 10.1021/bi00721a010. [DOI] [PubMed] [Google Scholar]
  15. Lawson D., Raff M. C., Gomperts B., Fewtrell C., Gilula N. B. Molecular events during membrane fusion. A study of exocytosis in rat peritoneal mast cells. J Cell Biol. 1977 Feb;72(2):242–259. doi: 10.1083/jcb.72.2.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lucy J. A. The fusion of biological membranes. Nature. 1970 Aug 22;227(5260):815–817. doi: 10.1038/227815a0. [DOI] [PubMed] [Google Scholar]
  17. Mousa G. Y., Trevithick J. R., Bechberger J., Blair D. G. Cytochalasin D induces the capping of both leukaemia viral proteins and actin in infected cells. Nature. 1978 Aug 24;274(5673):808–809. doi: 10.1038/274808a0. [DOI] [PubMed] [Google Scholar]
  18. Mürer E. H., Levin J., Holme R. Isolation and studies of the granules of the amebocytes of Limulus polyphemus, the horseshoe crab. J Cell Physiol. 1975 Dec;86(3 Pt 1):533–542. doi: 10.1002/jcp.1040860310. [DOI] [PubMed] [Google Scholar]
  19. Neher E. Asymmetric membranes resulting from the fusion of two black lipid bilayers. Biochim Biophys Acta. 1974 Dec 24;373(3):327–336. doi: 10.1016/0005-2736(74)90012-1. [DOI] [PubMed] [Google Scholar]
  20. Nemeth E. F., Douglas W. W. Effects of microfilament-active drugs, phalloidin and the cytochalasins A and B, on exocytosis in mast cells evoked by 48/80 or A23187. Naunyn Schmiedebergs Arch Pharmacol. 1978 Apr;302(2):153–163. doi: 10.1007/BF00517982. [DOI] [PubMed] [Google Scholar]
  21. Orci L., Perrelet A., Friend D. S. Freeze-fracture of membrane fusions during exocytosis in pancreatic B-cells. J Cell Biol. 1977 Oct;75(1):23–30. doi: 10.1083/jcb.75.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Palade G. E., Bruns R. R. Structural modulations of plasmalemmal vesicles. J Cell Biol. 1968 Jun;37(3):633–649. doi: 10.1083/jcb.37.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Palade G. Intracellular aspects of the process of protein synthesis. Science. 1975 Aug 1;189(4200):347–358. doi: 10.1126/science.1096303. [DOI] [PubMed] [Google Scholar]
  24. Pinto da Silva P., Nogueira M. L. Membrane fusion during secretion. A hypothesis based on electron microscope observation of Phytophthora Palmivora zoospores during encystment. J Cell Biol. 1977 Apr;73(1):161–181. doi: 10.1083/jcb.73.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pollard H. B., Pazoles C. J., Creutz C. E., Zinder O. The chromaffin granule and possible mechanisms of exocytosis. Int Rev Cytol. 1979;58:159–197. doi: 10.1016/s0074-7696(08)61475-8. [DOI] [PubMed] [Google Scholar]
  26. Pollard H. B., Tack-Goldman K., Pazoles C. J., Creutz C. E., Shulman N. R. Evidence for control of serotonin secretion from human platelets by hydroxyl ion transport and osmotic lysis. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5295–5299. doi: 10.1073/pnas.74.12.5295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Röhlich P. Membrane-associated actin filaments in the cortical cytoplasm of the rat mast cell. Exp Cell Res. 1975 Jul;93(2):293–298. doi: 10.1016/0014-4827(75)90453-x. [DOI] [PubMed] [Google Scholar]
  28. Satir B., Schooley C., Satir P. Membrane fusion in a model system. Mucocyst secretion in Tetrahymena. J Cell Biol. 1973 Jan;56(1):153–176. doi: 10.1083/jcb.56.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Smith J. E., Reese T. S. Use of aldehyde fixatives to determine the rate of synaptic transmitter release. J Exp Biol. 1980 Dec;89:19–29. doi: 10.1242/jeb.89.1.19. [DOI] [PubMed] [Google Scholar]
  30. Smith U., Smith D. S., Winkler H., Ryan J. W. Exocytosis in the adrenal medulla demonstrated by freeze-etching. Science. 1973 Jan 5;179(4068):79–82. doi: 10.1126/science.179.4068.79. [DOI] [PubMed] [Google Scholar]
  31. Tanaka Y., De Camilli P., Meldolesi J. Membrane interactions between secretion granules and plasmalemma in three exocrine glands. J Cell Biol. 1980 Feb;84(2):438–453. doi: 10.1083/jcb.84.2.438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Theodosis D. T., Dreifuss J. J., Orci L. A freeze-fracture study of membrane events during neurohypophysial secretion. J Cell Biol. 1978 Aug;78(2):542–553. doi: 10.1083/jcb.78.2.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zimmerberg J., Cohen F. S., Finkelstein A. Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. I. Discharge of vesicular contents across the planar membrane. J Gen Physiol. 1980 Mar;75(3):241–250. doi: 10.1085/jgp.75.3.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. da Silva P. P., Kachar B. Quick freezing vs. chemical fixation: capture and identification of membrane fusion intermediates. Cell Biol Int Rep. 1980 Jul;4(7):625–640. doi: 10.1016/0309-1651(80)90201-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES