Abstract
In an effort to more clearly elucidate the role of cellular structures as calcium sinks and sources in smooth muscle cells, the intracellular distribution of radioactive calcium was evaluated by a new method based on freeze-drying. The guinea pig vas deferens was exposed to a physiological salt solution that contained 45Ca. The muscle was then freeze-dried and prepared for electron microscope autoradiography. The grain density over the plasma membrane, mitochondria, and sarcoplasmic reticulum (SR) was significantly greater than that of the matrix. These results suggest that the plasma membrane, mitochondria and SR have the capacity to accumulate calcium. Which of these structures serve as a source of calcium for contraction remains to be determined. A stereological comparison between freeze-dried and conventionally prepared smooth muscles revealed several differences. The cross- sectional area of freeze-dried cells was about twice that of conventionally prepared cells. Moreover, mitochondria and sub-surface vesicles occupied a significantly smaller percentage of the cell in the freeze-dried tissue than they did in the conventionally prepared tissue.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atsumi S., Sugi H. Localization of calcium-accumulating structures in the anterior byssal retractor muscle of Mytilus edulis and their role in the regulation of active and catch contractions. J Physiol. 1976 Jun;257(3):549–560. doi: 10.1113/jphysiol.1976.sp011384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Batra S. The role of mitochondrial calcium uptake in contraction and relaxation of the human myometrium. Biochim Biophys Acta. 1973 May 30;305(2):428–432. doi: 10.1016/0005-2728(73)90188-6. [DOI] [PubMed] [Google Scholar]
- CARO L. G., VAN TUBERGEN R. P., KOLB J. A. High-resolution autoradiography. I. Methods. J Cell Biol. 1962 Nov;15:173–188. doi: 10.1083/jcb.15.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coulter H. D., Terracio L. Preparation of biological tissues for electron microscopy by freeze-drying. Anat Rec. 1977 Apr;187(4):477–494. doi: 10.1002/ar.1091870405. [DOI] [PubMed] [Google Scholar]
- Debbas G., Hoffman L., Landon E. J., Hurwitz L. Electron microscopic localization of calcium in vascular smooth muscle. Anat Rec. 1975 Aug;182(4):447–471. doi: 10.1002/ar.1091820405. [DOI] [PubMed] [Google Scholar]
- Devine C. E., Somlyo A. V., Somlyo A. P. Sarcoplasmic reticulum and excitation-contraction coupling in mammalian smooth muscles. J Cell Biol. 1972 Mar;52(3):690–718. doi: 10.1083/jcb.52.3.690. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fitzpatrick D. F., Landon E. J., Debbas G., Hurwitz L. A calcium pump in vascular smooth muscle. Science. 1972 Apr 21;176(4032):305–306. doi: 10.1126/science.176.4032.305. [DOI] [PubMed] [Google Scholar]
- Gabella G. Hypertrophic smooth muscle. II. Sarcoplasmic reticulum, caveolae and mitochondria. Cell Tissue Res. 1979 Sep 2;201(1):79–92. doi: 10.1007/BF00238049. [DOI] [PubMed] [Google Scholar]
- Gabella G. Quantitative morphological study of smooth muscle cells of the guinea-pig taenia coli. Cell Tissue Res. 1976 Jul 26;170(2):161–186. doi: 10.1007/BF00224297. [DOI] [PubMed] [Google Scholar]
- Gabella G. Structural changes in smooth muscle cells during isotonic contraction. Cell Tissue Res. 1976 Jul 26;170(2):187–201. doi: 10.1007/BF00224298. [DOI] [PubMed] [Google Scholar]
- Gabella G. The sphincter pupillae of the guinea-pig: structure of muscle cells, intercellular relations and density of innervation. Proc R Soc Lond B Biol Sci. 1974 Jul 30;186(1085):369–386. doi: 10.1098/rspb.1974.0055. [DOI] [PubMed] [Google Scholar]
- Heumann H. G. The subcellular localization of calcium in vertebrate smooth muscle; calcium-containing and calcium-accumulating structures in muscle cells of mouse intestine. Cell Tissue Res. 1976 Jun 14;169(2):221–231. doi: 10.1007/BF00214210. [DOI] [PubMed] [Google Scholar]
- Heuser J. E., Reese T. S., Dennis M. J., Jan Y., Jan L., Evans L. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol. 1979 May;81(2):275–300. doi: 10.1083/jcb.81.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hurwitz L., Joiner P. D. Mobilization of cellular calcium for contraction in intestinal smooth muscle. Am J Physiol. 1970 Jan;218(1):12–19. doi: 10.1152/ajplegacy.1970.218.1.12. [DOI] [PubMed] [Google Scholar]
- Hurwitz L., Suria A. The link between agonist action and response in smooth muscle. Annu Rev Pharmacol. 1971;11:303–326. doi: 10.1146/annurev.pa.11.040171.001511. [DOI] [PubMed] [Google Scholar]
- Jonas L., Zelck U. The subcellular calcium distribution in the smooth muscle cells of the pig coronary artery. Exp Cell Res. 1974 Dec;89(2):352–358. doi: 10.1016/0014-4827(74)90800-3. [DOI] [PubMed] [Google Scholar]
- Lee R. M., Garfield R. E., Forrest J. B., Daniel E. E. The effects of fixation, dehydration and critical point drying on the size of cultured smooth muscle cells. Scan Electron Microsc. 1979;(3):439–448. [PubMed] [Google Scholar]
- McGuffee L. J., Bagby R. M. Ultrastructure, calcium accumulation, and contractile response in smooth muscle. Am J Physiol. 1976 May;230(5):1217–1224. doi: 10.1152/ajplegacy.1976.230.5.1217. [DOI] [PubMed] [Google Scholar]
- McGuffee L. J., Little S. A., Hurwitz L. Ultrastructural characteristics of freeze-dried smooth muscle. J Histochem Cytochem. 1979 Sep;27(9):1267–1270. doi: 10.1177/27.9.573299. [DOI] [PubMed] [Google Scholar]
- Moriya M., Miyazaki E. Structural analysis of functionally different smooth muscles. Cell Tissue Res. 1979 Nov;202(2):337–341. doi: 10.1007/BF00232247. [DOI] [PubMed] [Google Scholar]
- PEACHEY L. D. ELECTRON MICROSCOPIC OBSERVATIONS ON THE ACCUMULATION OF DIVALENT CATIONS IN INTRAMITOCHONDRIAL GRANULES. J Cell Biol. 1964 Jan;20:95–111. doi: 10.1083/jcb.20.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Popescu L. M., Diculescu I. Calcium in smooth muscle sarcoplasmic reticulum in situ. Conventional and X-ray analytical electron microscopy. J Cell Biol. 1975 Dec;67(3):911–918. doi: 10.1083/jcb.67.3.911. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Popescu L. M., Diculescu I., Zelck U., Ionescu N. Ultrastructural distribution of calcium in smooth muscle cells of guinea-pig taenia coli. A correlated electron microscopic and quantitative study. Cell Tissue Res. 1974;154(3):357–378. doi: 10.1007/BF00223732. [DOI] [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Somlyo A. P., Devine C. E., Somlyo A. V., North S. R. Sarcoplasmic reticulum and the temperature-dependent contraction of smooth muscle in calcium-free solutions. J Cell Biol. 1971 Dec;51(3):722–741. doi: 10.1083/jcb.51.3.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Somlyo A. P., Somlyo A. V., Devine C. E., Peters P. D., Hall T. A. Electron microscopy and electron probe analysis of mitochondrial cation accumulation in smooth muscle. J Cell Biol. 1974 Jun;61(3):723–742. doi: 10.1083/jcb.61.3.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Somlyo A. P., Somlyo A. V., Shuman H. Electron probe analysis of vascular smooth muscle. Composition of mitochondria, nuclei, and cytoplasm. J Cell Biol. 1979 May;81(2):316–335. doi: 10.1083/jcb.81.2.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Somlyo A. P., Somlyo A. V., Shuman H., Sloane B., Scarpa A. Electron probe analysis of calcium compartments in cryo sections of smooth and striated muscles. Ann N Y Acad Sci. 1978 Apr 28;307:523–544. doi: 10.1111/j.1749-6632.1978.tb41980.x. [DOI] [PubMed] [Google Scholar]
- Somlyo A. V., Somlyo A. P. Strontium accumulation by sarcoplasmic reticulum and mitochondria in vascular smooth muscle. Science. 1971 Nov 26;174(4012):955–958. doi: 10.1126/science.174.4012.955. [DOI] [PubMed] [Google Scholar]
- Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
- Sugi H., Daimon T. Translocation of intracellularly stored calcium during the contraction-relaxation cycle in guinea pig taenia coli. Nature. 1977 Sep 29;269(5627):436–438. doi: 10.1038/269436a0. [DOI] [PubMed] [Google Scholar]
- Sussman M. V., Chin L. Liquid water in frozen tissue: study by nuclear magnetic resonance. Science. 1966 Jan 21;151(3708):324–325. doi: 10.1126/science.151.3708.324. [DOI] [PubMed] [Google Scholar]
- Suzuki S., Sugi H. Ultrastructural and physiological studies on the longitudinal body wall muscle of Dolabella auricularia. II. Localization of intracellular calcium and its translocation during mechanical activity. J Cell Biol. 1978 Nov;79(2 Pt 1):467–478. doi: 10.1083/jcb.79.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Harreveld A., Trubatch J., Steiner J. Rapid freezing and electron microscopy for the arrest of physiological processes. J Microsc. 1974 Mar;100(2):189–198. doi: 10.1111/j.1365-2818.1974.tb03928.x. [DOI] [PubMed] [Google Scholar]
- WINEGRAD S. AUTORADIOGRAPHIC STUDIES OF INTRACELLULAR CALCIUM IN FROG SKELETAL MUSCLE. J Gen Physiol. 1965 Jan;48:455–479. doi: 10.1085/jgp.48.3.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wootton G. S., Goodford P. J. The ratio of smooth muscle cell volume to cell surface area measured by electron microscopy with corrections for shrinkage. Cell Tissue Res. 1975 Sep 16;162(1):75–82. doi: 10.1007/BF00223263. [DOI] [PubMed] [Google Scholar]