Abstract
A defect in mitochondrial protein synthesis has previously been identified in the respiration-deficient Chinese hamster lung fibroblast mutant V79-G7. The present work extends the characterization of this mutant. A more sensitive analysis has shown that mutant mitochondria synthesize all mitochondrially encoded peptides, but in significantly reduced amounts. This difference is also seen when isolated mitochondria are tested for in vitro protein synthesis. To distinguish between a defect in the translational machinery and a defect in the transcription of mitochondrial DNA, we investigated the synthesis of the 16S and 12S mitochondrial rRNA species and found them to be made in normal amounts in G7 mitochondria. These rRNA species appear to be assembled into subunits whose sedimentation behavior is virtually indistinguishable from that of the wild-type subunits. We also examined the consequences of the defect in mitochondrial protein synthesis on mutant cells and their mitochondria-utilizing techniques of electron microscopy, two-dimensional gel electrophoresis and immunochemical analysis. G7 mitochondria have a characteristic ultrastructure distinguished by predominantly tubular cristae, but the overall biochemical composition of mitochondrial membrane and matrix fractions appears essentially unaltered except for the absence of a few characteristic peptides. Specifically, we identify the absence of two mitochondrially encoded subunits of cytochrome c oxidase on two- dimensional gels and demonstrate a drastic reduction of both cytoplasmically and mitochondrially synthesized subunits of enzyme in immunoprecipitates of G7 mitochondria.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ames G. F., Nikaido K. Two-dimensional gel electrophoresis of membrane proteins. Biochemistry. 1976 Feb 10;15(3):616–623. doi: 10.1021/bi00648a026. [DOI] [PubMed] [Google Scholar]
- Attardi B., Attardi G. Expression of the mitochondrial genome in HeLa cells. I. Properties of the discrete RNA components from the mitochondrial fraction. J Mol Biol. 1971 Jan 28;55(2):231–249. doi: 10.1016/0022-2836(71)90194-x. [DOI] [PubMed] [Google Scholar]
- Borst P., Grivell L. A. The mitochondrial genome of yeast. Cell. 1978 Nov;15(3):705–723. doi: 10.1016/0092-8674(78)90257-x. [DOI] [PubMed] [Google Scholar]
- Breen G. A., Scheffler I. E. Cytoplasmic inheritance of oligomycin resistance in Chinese hamster ovary cells. J Cell Biol. 1980 Sep;86(3):723–729. doi: 10.1083/jcb.86.3.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Breen G. A., Scheffler I. E. Respiration-deficient Chinese hamster cell mutants: biochemical characterization. Somatic Cell Genet. 1979 Jul;5(4):441–451. doi: 10.1007/BF01538879. [DOI] [PubMed] [Google Scholar]
- DeFrancesco L., Scheffler I. E., Bissell M. J. A respiration-deficient Chinese hamster cell line with a defect in NADH-coenzyme Q reductase. J Biol Chem. 1976 Aug 10;251(15):4588–4595. [PubMed] [Google Scholar]
- DeFrancesco L., Werntz D., Scheffler I. E. Conditionally lethal mutations in chinese hamster cells. Characterization of a cell line with a possible defect in the Krebs cycle. J Cell Physiol. 1975 Apr;85(2 Pt 1):293–305. doi: 10.1002/jcp.1040850216. [DOI] [PubMed] [Google Scholar]
- Ditta G., Soderberg K., Landy F., Scheffler I. E. The selection of Chinese hamster cells deficient in oxidative energy metabolism. Somatic Cell Genet. 1976 Jul;2(4):331–344. doi: 10.1007/BF01538838. [DOI] [PubMed] [Google Scholar]
- Green D. E., Asai J., Harris R. A., Penniston J. T. Conformational basis of energy transformations in membrane systems. 3. Configurational changes in the mitochondrial inner membrane induced by changes in functional states. Arch Biochem Biophys. 1968 May;125(2):684–705. doi: 10.1016/0003-9861(68)90626-7. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K., Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol. 1973 Nov 15;80(4):575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
- Lansman R. A., Clayton D. A. Mitochondrial protein synthesis in mouse L-cells: effect of selective nicking of mitochondrial DNA. J Mol Biol. 1975 Dec 25;99(4):777–793. doi: 10.1016/s0022-2836(75)80184-7. [DOI] [PubMed] [Google Scholar]
- Maccecchini M. L., Rudin Y., Blobel G., Schatz G. Import of proteins into mitochondria: precursor forms of the extramitochondrially made F1-ATPase subunits in yeast. Proc Natl Acad Sci U S A. 1979 Jan;76(1):343–347. doi: 10.1073/pnas.76.1.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mascarello J. T., Soderberg K., Scheffler I. E. Assignment of a gene for succinate dehydrogenase to human chromosome 1 by somatic cell hybridization. Cytogenet Cell Genet. 1980;28(1-2):121–135. doi: 10.1159/000131520. [DOI] [PubMed] [Google Scholar]
- Montenecourt B. S., Langsam M. E., Dubin D. T. Mitochondrial RNA from cultured animal cells. II. A comparison of the high molecular weight RNA from mouse and hamster cells. J Cell Biol. 1970 Aug;46(2):245–251. doi: 10.1083/jcb.46.2.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morais R., Giguère L. On the adaptation of cultured chick embryo cells to growth in the presence of chloramphenicol. J Cell Physiol. 1979 Oct;101(1):77–88. doi: 10.1002/jcp.1041010110. [DOI] [PubMed] [Google Scholar]
- O'Farrell P. Z., Goodman H. M., O'Farrell P. H. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell. 1977 Dec;12(4):1133–1141. doi: 10.1016/0092-8674(77)90176-3. [DOI] [PubMed] [Google Scholar]
- Phan S. H., Mahler H. R. Studies on cytochrome oxidase. Preliminary characterization of an enzyme containing only four subunits. J Biol Chem. 1976 Jan 25;251(2):270–276. [PubMed] [Google Scholar]
- SHERMAN F., SLONIMSKI P. P. RESPIRATION-DEFICIENT MUTANTS OF YEAST. II. BIOCHEMISTRY. Biochim Biophys Acta. 1964 Jul 15;90:1–15. doi: 10.1016/0304-4165(64)90113-8. [DOI] [PubMed] [Google Scholar]
- Schnaitman C., Greenawalt J. W. Enzymatic properties of the inner and outer membranes of rat liver mitochondria. J Cell Biol. 1968 Jul;38(1):158–175. doi: 10.1083/jcb.38.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soderberg K. L., Ditta G. S., Scheffler I. E. Mammalian cells with defective mitochondrial functions: a Chinese hamster mutant cell line lacking succinate dehydrogenase activity. Cell. 1977 Apr;10(4):697–702. doi: 10.1016/0092-8674(77)90103-9. [DOI] [PubMed] [Google Scholar]
- Soderberg K., Mascarello J. T., Breen G. A., Scheffler I. E. Respiration-deficient Chinese hamster cell mutants: genetic characterization. Somatic Cell Genet. 1979 Mar;5(2):225–240. doi: 10.1007/BF01539163. [DOI] [PubMed] [Google Scholar]
- Tzagoloff A., Macino G., Sebald W. Mitochondrial genes and translation products. Annu Rev Biochem. 1979;48:419–441. doi: 10.1146/annurev.bi.48.070179.002223. [DOI] [PubMed] [Google Scholar]
- Tzagoloff A., Meagher P. Assesmbly of the mitochondrial membrane system. VI. Mitochondrial synthesis of subunit proteins of the rutamycin-sensitive adenosine triphosphatase. J Biol Chem. 1972 Jan 25;247(2):594–603. [PubMed] [Google Scholar]
- WURTMAN R. J., AXELROD J. A SENSITIVE AND SPECIFIC ASSAY FOR THE ESTIMATION OF MONOAMINE OXIDASE. Biochem Pharmacol. 1963 Dec;12:1439–1441. doi: 10.1016/0006-2952(63)90215-6. [DOI] [PubMed] [Google Scholar]
- Wiseman A., Attardi G. Cytoplasmically inherited mutations of a human cell line resulting in deficient mitochondrial protein synthesis. Somatic Cell Genet. 1979 Mar;5(2):241–262. doi: 10.1007/BF01539164. [DOI] [PubMed] [Google Scholar]
- YOTSUYANAGI Y. [Study of yeast mitochondria. II. Mitochondria of respiration-deficient mutants]. J Ultrastruct Res. 1962 Aug;7:141–158. doi: 10.1016/s0022-5320(62)80032-x. [DOI] [PubMed] [Google Scholar]