Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Jul 1;90(1):181–186. doi: 10.1083/jcb.90.1.181

Organization in the cell nucleus: divalent cations modulate the distribution of condensed and diffuse chromatin

PMCID: PMC2111843  PMID: 7251674

Abstract

The organization of rat liver nuclei in vitro depends on the ionic milieu. Turbidity measurements of nuclear suspensions in the presence of varying concentrations of divalent cations have been correlated with nuclear ultrastructure. The concentration of MgCl2 (2 mM) at which turbidity of nuclear suspensions is maximal and chromatin condensation appears most extensive is the same concentration that reportedly (Gottesfeld et al., 1974, Proc. Natl. Acad. Sci. U. S. A. 71:2193-2197) precipitates "inactive" chromatin. Thus, a mechanism is suggested by which chromatin activity and ultrastructural organization within the nucleus may be mediated. The nuclear organizational changes attendant upon the decrease in divalent cation concentration were not entirely reversible.

Full Text

The Full Text of this article is available as a PDF (696.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aaronson R. P. Isolation of nuclear proteins associated with the nuclear pore complex and the nuclear peripheral lamina of rat liver. Methods Cell Biol. 1977;16:337–342. doi: 10.1016/s0091-679x(08)60110-7. [DOI] [PubMed] [Google Scholar]
  2. Berezney R., Coffey D. S. Nuclear matrix. Isolation and characterization of a framework structure from rat liver nuclei. J Cell Biol. 1977 Jun;73(3):616–637. doi: 10.1083/jcb.73.3.616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blobel G., Potter V. R. Nuclei from rat liver: isolation method that combines purity with high yield. Science. 1966 Dec 30;154(3757):1662–1665. doi: 10.1126/science.154.3757.1662. [DOI] [PubMed] [Google Scholar]
  4. Brasch K., Seligy V. L., Setterfield G. Effects of low salt concentration on structural organization and template activity of chromatin in chicken erythrocyte nuclei. Exp Cell Res. 1971 Mar;65(1):61–72. doi: 10.1016/s0014-4827(71)80050-2. [DOI] [PubMed] [Google Scholar]
  5. Bryant F. D., Latimer P., Seiber B. A. Changes in total light scattering and absorption caused by changes in particle conformation--a test of theory. Arch Biochem Biophys. 1969 Dec;135(1):109–117. doi: 10.1016/0003-9861(69)90521-9. [DOI] [PubMed] [Google Scholar]
  6. Bryant F. D., Seiber B. A., Latimer P. Absolute optical cross sections of cells and chloroplasts. Arch Biochem Biophys. 1969 Dec;135(1):97–108. doi: 10.1016/0003-9861(69)90520-7. [DOI] [PubMed] [Google Scholar]
  7. Camerini-Otero R. D., Franklin R. M., Day L. A. Molecular weights, dispersion of refractive index increments, and dimensions from transmittance spectrophotometry. Bacteriophages R17, T7, and PM2, and tobacco mosaic virus. Biochemistry. 1974 Aug 27;13(18):3763–3773. doi: 10.1021/bi00715a023. [DOI] [PubMed] [Google Scholar]
  8. Cotman C. W., Flansburg D. A. An analytical micro-method for electron microscopic study of the composition and sedimentation properties of subcellular fractions. Brain Res. 1970 Aug 12;22(1):152–156. doi: 10.1016/0006-8993(70)90413-0. [DOI] [PubMed] [Google Scholar]
  9. Farquhar M. G., Palade G. E. Cell junctions in amphibian skin. J Cell Biol. 1965 Jul;26(1):263–291. doi: 10.1083/jcb.26.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gottesfeld J. M., Garrard W. T., Bagi G., Wilson R. F., Bonner J. Partial purification of the template-active fraction of chromatin: a preliminary report. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2193–2197. doi: 10.1073/pnas.71.6.2193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holzwarth G., Gordon D. G., McGinness J. E., Dorman B. P., Maestre M. F. Mie scattering contributions to the optical density and circular dichroism of T2 bacteriophage. Biochemistry. 1974 Jan 1;13(1):126–132. doi: 10.1021/bi00698a020. [DOI] [PubMed] [Google Scholar]
  12. Kraemer R. J., Coffey D. S. The interaction of natural and synthetic polyanions with mammalian nucleo. I. DNA synthesis. Biochim Biophys Acta. 1970 Dec 14;224(2):553–567. [PubMed] [Google Scholar]
  13. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Latimer P., Moore D. M., Bryant F. D. Changes in total light scattering and absorption caused by changes in particle conformation. J Theor Biol. 1968 Dec;21(3):348–367. doi: 10.1016/0022-5193(68)90120-3. [DOI] [PubMed] [Google Scholar]
  15. Marushige K., Bonner J. Fractionation of liver chromatin. Proc Natl Acad Sci U S A. 1971 Dec;68(12):2941–2944. doi: 10.1073/pnas.68.12.2941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Monneron A., Blobel G., Palade G. E. Fractionation of the nucleus by divalent cations. Isolation of nuclear membranes. J Cell Biol. 1972 Oct;55(1):104–125. doi: 10.1083/jcb.55.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Olins D. E., Olins A. L. Physical studies of isolated eucaryotic nuclei. J Cell Biol. 1972 Jun;53(3):715–736. doi: 10.1083/jcb.53.3.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. PHILPOT J. S., STANIER J. E. The choice of the suspension medium for rat-liver-cell nuclei. Biochem J. 1956 Jun;63(2):214–223. doi: 10.1042/bj0630214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. STEMPAK J. G., WARD R. T. AN IMPROVED STAINING METHOD FOR ELECTRON MICROSCOPY. J Cell Biol. 1964 Sep;22:697–701. doi: 10.1083/jcb.22.3.697. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES