Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Aug 1;90(2):474–484. doi: 10.1083/jcb.90.2.474

Golgi apparatus, GERL, and secretory granule formation within neurons of the hypothalamo-neurohypophysial system of control and hyperosmotically stressed mice

PMCID: PMC2111875  PMID: 6116717

Abstract

The vasopressin-producing neurons of the hypothalamo-neurohypophysial system are a particularly good model with which to consider the relationship between the Golgi apparatus nd GERL and their roles in secretory granule production because these neurons increase their synthesis and secretion of vasopressin in response to hyperosmotic stress. Enzyme cytochemical techniques for acid phosphatase (AcPase) and thiamine pyrophosphatase (TPPase) activities were used to distinguish GERL from the Golgi apparatus in cell bodies of the supraoptic nucleus from normal mice, mice hyperosmotically stressed by drinking 2% salt water, and mice allowed to recover for 5-10 d from hyperosmotic stress. In nonincubated preparations of control supraoptic perikarya, immature secretory granules at the trans face of the Golgi apparatus were frequently attached to a narrow, smooth membrane cisterna identified as GERL. Secretory granules were occasionally seen attached to Golgi saccules. TPPase activity was present in one or two of the trans Golgi saccules; AcPase activity appeared in GERL and attached immature secretory granules, rarely in the trans Golgi saccules, and in secondary lysosomes. As a result of hyperosmotic stress, the Golgi apparatus hypertrophied, and secretory granules formed from all Golgi saccules and GERL. Little or no AcPase activity could be demonstrated in GERL, whereas all Golgi saccules and GERL-like cisternae were TPPase positive. During recovery, AcPase activity in GERL returned to normal; however, the elevated TPPase activity and secretory granule formation seen in GERL-like cisternae and all Golgi saccules during hyperosmotic stress persisted. These results suggest that under normal conditions GERL is the predominant site for the secretory granule formation, but during hyperosmotic stress, the Golgi saccules assume increased importance in this function. The observed cytochemical modulations in Golgi saccules and GERL suggest that GERL is structurally and functionally related to the Golgi saccules.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boutry J. M., Nivikoff A. B. Cytochemical studies on golgi apparatus, GERL, and lysosomes in neurons of dorsal root ganglia in mice. Proc Natl Acad Sci U S A. 1975 Feb;72(2):508–512. doi: 10.1073/pnas.72.2.508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Broadwell R. D. Cytochemical localization of acid hydrolases in neurons of the mammalian central nervous system. J Histochem Cytochem. 1980 Jan;28(1):87–89. doi: 10.1177/28.1.7351476. [DOI] [PubMed] [Google Scholar]
  3. Broadwell R. D., Oliver C., Brightman M. W. Localization of neurophysin within organelles associated with protein synthesis and packaging in the hypothalamoneurohypophysial system: an immunocytochemical study. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5999–6003. doi: 10.1073/pnas.76.11.5999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Broadwell R. D., Oliver C., Brightman M. W. Neuronal transport of acid hydrolases and peroxidase within the lysosomal system or organelles: involvement of agranular reticulum-like cisterns. J Comp Neurol. 1980 Apr 1;190(3):519–532. doi: 10.1002/cne.901900308. [DOI] [PubMed] [Google Scholar]
  5. Brownstein M. J., Russell J. T., Gainer H. Synthesis, transport, and release of posterior pituitary hormones. Science. 1980 Jan 25;207(4429):373–378. doi: 10.1126/science.6153132. [DOI] [PubMed] [Google Scholar]
  6. CARO L. G., PALADE G. E. PROTEIN SYNTHESIS, STORAGE, AND DISCHARGE IN THE PANCREATIC EXOCRINE CELL. AN AUTORADIOGRAPHIC STUDY. J Cell Biol. 1964 Mar;20:473–495. doi: 10.1083/jcb.20.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dauwalder M., Whaley W. G., Kephart J. E. Phosphatases and differentiation of the Golgi apparatus. J Cell Sci. 1969 Mar;4(2):455–497. doi: 10.1242/jcs.4.2.455. [DOI] [PubMed] [Google Scholar]
  8. Doty S. B., Smith C. E., Hand A. R., Oliver C. Inorganic trimetaphosphatase as a histochemical marker for lysosomes in light and electron microscopy. J Histochem Cytochem. 1977 Dec;25(12):1381–1384. doi: 10.1177/25.12.200672. [DOI] [PubMed] [Google Scholar]
  9. Dyball R. E. Oxytocin and ADH secretion in relation to electrical activity in antidromically identified supraoptic and paraventricular units. J Physiol. 1971 Apr;214(2):245–256. doi: 10.1113/jphysiol.1971.sp009430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Essner E., Haimes H. Ultrastructural study of GERL in beige mouse alveolar macrophages. J Cell Biol. 1977 Nov;75(2 Pt 1):381–387. doi: 10.1083/jcb.75.2.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Essner E., Oliver C. Lysosome formation in hepatocytes of mice with Chèdiak-Higashi syndrome. Lab Invest. 1974 May;30(5):597–607. [PubMed] [Google Scholar]
  12. Gainer H., Sarne Y., Brownstein M. J. Biosynthesis and axonal transport of rat neurohypophysial proteins and peptides. J Cell Biol. 1977 May;73(2):366–381. doi: 10.1083/jcb.73.2.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. George J. M. Vasopressin and oxytocin are depleted from rat hypothalamic nuclei after oral hypertonic saline. Science. 1976 Jul 9;193(4248):146–148. doi: 10.1126/science.935863. [DOI] [PubMed] [Google Scholar]
  14. Hand A. R. Morphology and cytochemistry of the Golgi apparatus of rat salivary gland acnar cells. Am J Anat. 1971 Feb;130(2):141–157. doi: 10.1002/aja.1001300203. [DOI] [PubMed] [Google Scholar]
  15. Hand A. R., Oliver C. Cytochemical studies of GERL and its role in secretory granule formation in exocrine cells. Histochem J. 1977 Jul;9(4):375–392. doi: 10.1007/BF01002972. [DOI] [PubMed] [Google Scholar]
  16. Hand A. R., Oliver C. Relationship between the Golgi apparatus, GERL, and secretory granules in acinar cells of the rat exorbital lacrimal gland. J Cell Biol. 1977 Aug;74(2):399–413. doi: 10.1083/jcb.74.2.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Holtzman E., Dominitz R. Cytochemical studies of lysosomes, golgi apparatus and endoplasmic reticulum in secretion and protein uptake by adrenal medulla cells of the rat. J Histochem Cytochem. 1968 May;16(5):320–336. doi: 10.1177/16.5.320. [DOI] [PubMed] [Google Scholar]
  18. Holtzman E., Novikoff A. B., Villaverde H. Lysosomes and GERL in normal and chromatolytic neurons of the rat ganglion nodosum. J Cell Biol. 1967 May;33(2):419–435. doi: 10.1083/jcb.33.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jamieson J. D., Palade G. E. Intracellular transport of secretory proteins in the pancreatic exocrine cell. I. Role of the peripheral elements of the Golgi complex. J Cell Biol. 1967 Aug;34(2):577–596. doi: 10.1083/jcb.34.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jamieson J. D., Palade G. E. Intracellular transport of secretory proteins in the pancreatic exocrine cell. II. Transport to condensing vacuoles and zymogen granules. J Cell Biol. 1967 Aug;34(2):597–615. doi: 10.1083/jcb.34.2.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jones C. W., Pickering B. T. Comparison of the effects of water deprivation and sodium chloride imbibition on the hormone content of the neurohypophysis of the rat. J Physiol. 1969 Aug;203(2):449–458. doi: 10.1113/jphysiol.1969.sp008874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kozlowski G. P., Frenk S., Brownfield M. S. Localization of neurophysin in the rat supraoptic nucleus. I. Ultrastructural immunocytochemistry using the post-embedding technique. Cell Tissue Res. 1977 Apr 29;179(4):467–473. doi: 10.1007/BF00219849. [DOI] [PubMed] [Google Scholar]
  23. Morré D. J., Keenan T. W., Huang C. M. Membrane flow and differentiation: origin of Golgi apparatus membranes from endoplasmic reticulum. Adv Cytopharmacol. 1974;2:107–125. [PubMed] [Google Scholar]
  24. NOVIKOFF A. B., GOLDFISCHER S. Nucleosidediphosphatase activity in the Golgi apparatus and its usefulness for cytological studies. Proc Natl Acad Sci U S A. 1961 Jun 15;47:802–810. doi: 10.1073/pnas.47.6.802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nishioka R. S., Zambrano D., Bern H. A. Electron microscope radioautography of amino acid incorporation by supraoptic neurons of the rat. Gen Comp Endocrinol. 1970 Dec;15(3):477–483. doi: 10.1016/0016-6480(70)90120-6. [DOI] [PubMed] [Google Scholar]
  26. Novikoff A. B., Mori M., Quintana N., Yam A. Studies of the secretory process in the mammalian exocrine pancreas. I. The condensing vacuoles. J Cell Biol. 1977 Oct;75(1):148–165. doi: 10.1083/jcb.75.1.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Novikoff A. B., Novikoff P. M., Ma M., Shin W. Y., Quintana N. Cytochemical studies of secretory and other granules associated with the endoplasmic reticulum in rat thyroid epithelial cells. Adv Cytopharmacol. 1974;2:349–368. [PubMed] [Google Scholar]
  28. Novikoff A. B. The endoplasmic reticulum: a cytochemist's view (a review). Proc Natl Acad Sci U S A. 1976 Aug;73(8):2781–2787. doi: 10.1073/pnas.73.8.2781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Novikoff A. B., Yam A., Novikoff P. M. Cytochemical study of secretory process in transplantable insulinoma of syrian golden hamster. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4501–4505. doi: 10.1073/pnas.72.11.4501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Novikoff P. M., Novikoff A. B., Quintana N., Hauw J. J. Golgi apparatus, GERL, and lysosomes of neurons in rat dorsal root ganglia, studied by thick section and thin section cytochemistry. J Cell Biol. 1971 Sep;50(3):859–886. doi: 10.1083/jcb.50.3.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Novikoff P. M., Yam A. The cytochemical demonstration of GERL in rat hepatocytes during lipoprotein mobilization. J Histochem Cytochem. 1978 Jan;26(1):1–13. doi: 10.1177/26.1.563889. [DOI] [PubMed] [Google Scholar]
  32. Oliver C., Auth R. E., Hand A. R. Morphological and cytochemical alterations of the Golgi apparatus and GERL in rat parotid acinar cells during ethionine intoxication and recovery. Am J Anat. 1980 Jul;158(3):275–284. doi: 10.1002/aja.1001580304. [DOI] [PubMed] [Google Scholar]
  33. Paavola L. G. The corpus luteum of the guinea pig. II. Cytochemical studies on the Golgi complex, GERL, and lysosomes in luteal cells during maximal progesterone secretion. J Cell Biol. 1978 Oct;79(1):45–58. doi: 10.1083/jcb.79.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Paavola L. G. The corpus luteum of the guinea pig. III. Cytochemical studies on the Golgi complex and GERL during normal postpartum regression of luteal cells, emphasizing the origin of lysosomes and autophagic vacuoles. J Cell Biol. 1978 Oct;79(1):59–73. doi: 10.1083/jcb.79.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Palade G. Intracellular aspects of the process of protein synthesis. Science. 1975 Aug 1;189(4200):347–358. doi: 10.1126/science.1096303. [DOI] [PubMed] [Google Scholar]
  36. Pelletier G., Novikoff A. B. Localization of phosphatase activities in the rat anterior pituitary gland. J Histochem Cytochem. 1972 Jan;20(1):1–12. doi: 10.1177/20.1.1. [DOI] [PubMed] [Google Scholar]
  37. Picard D., Michel-Bechet M., Athouël A. M., Rua S. Granules neurosécrétoires, lysosomes et complexe GRL dans le noyau supra-optique du rat. Bipolarité des complexes golgiens. Exp Brain Res. 1972;14(4):331–353. doi: 10.1007/BF00235031. [DOI] [PubMed] [Google Scholar]
  38. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sachs H., Fawcett P., Takabatake Y., Portanova R. Biosynthesis and release of vasopressin and neurophysin. Recent Prog Horm Res. 1969;25:447–491. doi: 10.1016/b978-0-12-571125-8.50013-2. [DOI] [PubMed] [Google Scholar]
  40. Silverman A. J. Ultrastructural studies on the localization of neurohypophysial hormones and their carrier proteins. J Histochem Cytochem. 1976 Jul;24(7):816–827. doi: 10.1177/24.7.60434. [DOI] [PubMed] [Google Scholar]
  41. Sturgess J. M., Moscarello M. A. Alterations in the Golgi complex and glycoprotein biosynthesis in normal and diseased tissues. Pathobiol Annu. 1976;6:1–29. [PubMed] [Google Scholar]
  42. Swaab D. F., Nijveldt F., Pool C. W. Distribution of oxytocin and vasopressin in the rat supraoptic and paraventricular nucleus. J Endocrinol. 1975 Dec;67(3):461–462. doi: 10.1677/joe.0.0670461. [DOI] [PubMed] [Google Scholar]
  43. Vandesande F., Dierickx K. Identification of the vasopressin producing and of the oxytocin producing neurons in the hypothalamic magnocellular neurosecretroy system of the rat. Cell Tissue Res. 1975 Dec 2;164(2):153–162. doi: 10.1007/BF00218970. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES