Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Aug 1;90(2):408–414. doi: 10.1083/jcb.90.2.408

Hybrids of Physarum myosin light chains and desensitized scallop myofibrils

PMCID: PMC2111881  PMID: 6457052

Abstract

The two light chains of Physarum myosin have been purified in a 1:1 ratio with a yield of 0.5-1 mg/100 g of plasmodium and a purity of 40- 70%; the major contaminant is a 42,000-dalton protein. The 17,700 Mr Physarum myosin light chain (PhLC1) binds to scallop myofibrils, providing the regulatory light chains (ScRLC) have been removed. The 16,500 Mr light (PhLC2) does not bind to scallop myofibrils. The calcium control of scallop myosin ATPase is lost by the removal of one of the two ScRLC's and restored equally well by the binding of either PhLC1 or rabbit skeletal myosin light chains. When both ScRLC's are removed, replacement by two plasmodial light chains does not restore calcium control as platelet or scallop light chains do. Purified plasmodial actomyosin does not bind calcium in 10(-6) M free calcium, 1 mM MgCl2. No tropomyosin was isolated from Physarum by standard methods. Because the Physarum myosin light chains can substitute only partially for light chains from myosin linked systems, because calcium does not bind to the actomyosin, and because tropomyosin is apparently absent, the regulation of plasmodial actomyosin by micromolar Ca++ may involve other mechanisms, possibly phosphorylation.

Full Text

The Full Text of this article is available as a PDF (754.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelman M. R., Taylor E. W. Further purification and characterization of slime mold myosin and slime mold actin. Biochemistry. 1969 Dec;8(12):4976–4988. doi: 10.1021/bi00840a047. [DOI] [PubMed] [Google Scholar]
  2. Adelman M. R., Taylor E. W. Isolation of an actomyosin-like protein complex from slime mold plasmodium and the separation of the complex into actin- and myosin-like fractions. Biochemistry. 1969 Dec;8(12):4964–4975. doi: 10.1021/bi00840a046. [DOI] [PubMed] [Google Scholar]
  3. Adelstein R. S., Conti M. A. Phosphorylation of platelet myosin increases actin-activated myosin ATPase activity. Nature. 1975 Aug 14;256(5518):597–598. doi: 10.1038/256597a0. [DOI] [PubMed] [Google Scholar]
  4. Chantler P. D., Szent-Györgyi A. G. Regulatory light-chains and scallop myosin. Full dissociation, reversibility and co-operative effects. J Mol Biol. 1980 Apr 15;138(3):473–492. doi: 10.1016/s0022-2836(80)80013-1. [DOI] [PubMed] [Google Scholar]
  5. Cohen I., Cohen C. A tropomyosin-like protein from human platelets. J Mol Biol. 1972 Jul 21;68(2):383–387. doi: 10.1016/0022-2836(72)90220-3. [DOI] [PubMed] [Google Scholar]
  6. Daniel J. L., Adelstein R. S. Isolation and properties of platelet myosin light chain kinase. Biochemistry. 1976 Jun 1;15(11):2370–2377. doi: 10.1021/bi00656a019. [DOI] [PubMed] [Google Scholar]
  7. Focant B., Huriaux F. Light chains of carp and pike skeletal muscle myosins. Isolation and characterization of the most anodic light chain on alkaline pH electrophoresis. FEBS Lett. 1976 May 15;65(1):16–19. doi: 10.1016/0014-5793(76)80611-4. [DOI] [PubMed] [Google Scholar]
  8. Greene L. E., Yount R. G. Observations on the kinetics, subunit composition, and sulfhydryl reactivity of myosin from Physarum polycephalum. Biochim Biophys Acta. 1977 Jan 11;480(1):326–332. doi: 10.1016/0005-2744(77)90345-x. [DOI] [PubMed] [Google Scholar]
  9. Hatano S., Ohnuma J. Purification and characterization of myosin A from the myxomycete plasmodium. Biochim Biophys Acta. 1970 Apr 7;205(1):110–120. doi: 10.1016/0005-2728(70)90067-8. [DOI] [PubMed] [Google Scholar]
  10. Hatano S., Oosawa F. Isolation and characterization of plasmodium actin. Biochim Biophys Acta. 1966 Oct 31;127(2):488–498. doi: 10.1016/0304-4165(66)90402-8. [DOI] [PubMed] [Google Scholar]
  11. Hatano S. Specific effect of Ca2+ on movement of plasmodial fragment obtained by caffeine treatment. Exp Cell Res. 1970 Jul;61(1):199–203. doi: 10.1016/0014-4827(70)90274-0. [DOI] [PubMed] [Google Scholar]
  12. Hinssen H., D'Haese J. Filament formation by slime mould myosin isolated at low ionic strength. J Cell Sci. 1974 Jun;15(1):113–129. doi: 10.1242/jcs.15.1.113. [DOI] [PubMed] [Google Scholar]
  13. Ikebe M., Onishi H., Watanabe S. Phosphorylation and dephosphorylation of a light chain of the chicken gizzard myosin molecule. J Biochem. 1977 Jul;82(1):299–302. doi: 10.1093/oxfordjournals.jbchem.a131684. [DOI] [PubMed] [Google Scholar]
  14. Isenberg G., Wohlfarth-Bottermann K. E. Transformation of cytoplasmic actin. Importance for the organization of the contractile gel reticulum and the contraction--relasation cycle of cytoplasmic actomyosin. Cell Tissue Res. 1976 Oct 19;173(4):495–528. doi: 10.1007/BF00224311. [DOI] [PubMed] [Google Scholar]
  15. Kamiya N. The mechanism of cytoplasmic movement in a myxomycete plasmodium. Symp Soc Exp Biol. 1968;22:199–214. [PubMed] [Google Scholar]
  16. Kato T., Tonomura Y. Ca2+-sensitivity of actomyosin ATPase purified from Physarum polycephalum. J Biochem. 1975 Jun;77(6):1127–1134. [PubMed] [Google Scholar]
  17. Kato T., Tonomura Y. Physarum tropomyosin-troponin complex. Isolation and properties. J Biochem. 1975 Sep;78(3):583–588. doi: 10.1093/oxfordjournals.jbchem.a130943. [DOI] [PubMed] [Google Scholar]
  18. Kawamura M., Nagano K. A calcium ion-dependent atp pyrophosphohydrolase in Physarum polycephalum. Biochim Biophys Acta. 1975 Jul 27;397(1):207–219. doi: 10.1016/0005-2744(75)90194-1. [DOI] [PubMed] [Google Scholar]
  19. Kendrick-Jones J., Lehman W., Szent-Györgyi A. G. Regulation in molluscan muscles. J Mol Biol. 1970 Dec 14;54(2):313–326. doi: 10.1016/0022-2836(70)90432-8. [DOI] [PubMed] [Google Scholar]
  20. Kendrick-Jones J. Role of myosin light chains in calcium regulation. Nature. 1974 Jun 14;249(458):631–634. doi: 10.1038/249631a0. [DOI] [PubMed] [Google Scholar]
  21. Kendrick-Jones J., Szentkiralyi E. M., Szent-Györgyi A. G. Regulatory light chains in myosins. J Mol Biol. 1976 Jul 15;104(4):747–775. doi: 10.1016/0022-2836(76)90180-7. [DOI] [PubMed] [Google Scholar]
  22. Kessler D., Eisenlohr L. C., Lathwell M. J., Huang J., Taylor H. C., Godfrey S. D., Spady M. L. Physarum myosin light chain binds calcium. Cell Motil. 1980;1(1):63–71. doi: 10.1002/cm.970010106. [DOI] [PubMed] [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  24. Matsudaira P. T., Burgess D. R. SDS microslab linear gradient polyacrylamide gel electrophoresis. Anal Biochem. 1978 Jul 1;87(2):386–396. doi: 10.1016/0003-2697(78)90688-7. [DOI] [PubMed] [Google Scholar]
  25. Matthews L. M., Jr Ca++ regulation in caffeine-derived microplasmodia of Physarum polycephalum. J Cell Biol. 1977 Feb;72(2):502–505. doi: 10.1083/jcb.72.2.502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nachmias V. T., Meyers C. H. Cytoplasmic droplets produced by the effect of adenine on Physarum plasmodia. Comparison with caffeine droplets and effect of calcium. Exp Cell Res. 1980 Jul;128(1):121–126. doi: 10.1016/0014-4827(80)90394-8. [DOI] [PubMed] [Google Scholar]
  27. Nachmias V. T. Properties of Physarum myosin purified by a potassium iodide procedure. J Cell Biol. 1974 Jul;62(1):54–65. doi: 10.1083/jcb.62.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nachmias V., Asch A. Actin mediated calcium dependency of actomyosin in a myxomycete. Biochem Biophys Res Commun. 1974 Sep 23;60(2):656–664. doi: 10.1016/0006-291x(74)90291-5. [DOI] [PubMed] [Google Scholar]
  29. Perrie W. T., Perry S. V. An electrophoretic study of the low-molecular-weight components of myosin. Biochem J. 1970 Aug;119(1):31–38. doi: 10.1042/bj1190031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sellers J. R., Chantler P. D., Szent-Györgyi A. G. Hybrid formation between scallop myofibrils and foreign regulatory light-chains. J Mol Biol. 1980 Dec 15;144(3):223–245. doi: 10.1016/0022-2836(80)90088-1. [DOI] [PubMed] [Google Scholar]
  31. Sherry J. M., Górecka A., Aksoy M. O., Dabrowska R., Hartshorne D. J. Roles of calcium and phosphorylation in the regulation of the activity of gizzard myosin. Biochemistry. 1978 Oct 17;17(21):4411–4418. doi: 10.1021/bi00614a009. [DOI] [PubMed] [Google Scholar]
  32. Simmons R. M., Szent-Györgyi A. G. Reversible loss of calcium control of tension in scallop striated muscle associated with the removal of regulatory light chains. Nature. 1978 May 4;273(5657):62–64. doi: 10.1038/273062a0. [DOI] [PubMed] [Google Scholar]
  33. Small J. V., Sobieszek A. Ca-regulation of mammalian smooth muscle actomyosin via a kinase-phosphatase-dependent phosphorylation and dephosphorylation of the 20 000-Mr light chain of myosin. Eur J Biochem. 1977 Jun 15;76(2):521–530. doi: 10.1111/j.1432-1033.1977.tb11622.x. [DOI] [PubMed] [Google Scholar]
  34. Szent-Györgyi A. G., Szentkiralyi E. M., Kendrick-Jonas J. The light chains of scallop myosin as regulatory subunits. J Mol Biol. 1973 Feb 25;74(2):179–203. doi: 10.1016/0022-2836(73)90106-x. [DOI] [PubMed] [Google Scholar]
  35. Tanaka H., Hatano S. Extraction of native tropomyosin-like substances from myxomycete plasmodium and the cross reaction between plasmodium F-actin and muscle native tropomyosin. Biochim Biophys Acta. 1972 Feb 29;257(2):445–451. doi: 10.1016/0005-2795(72)90297-8. [DOI] [PubMed] [Google Scholar]
  36. Ueda T., Götz von Olenhusen K., Wohlfarth-Bottermann K. E. Reaction of the contractile apparatus in Physarum to injected Ca++, ATP, ADP and 5'AMP. Cytobiologie. 1978 Oct;18(1):76–94. [PubMed] [Google Scholar]
  37. Wohlfarth-Bottermann K. E., Götz von Olenhusen K. Oscillating contractions in protoplasmic strands of Physarum: effects of external Ca++-depletion and Ca++-antagonistic drugs on intrinsic contraction automaticity. Cell Biol Int Rep. 1977 May;1(3):239–247. doi: 10.1016/0309-1651(77)90048-0. [DOI] [PubMed] [Google Scholar]
  38. Wohlfarth-Bottermann K. E. Oscillatory contraction activity in Physarum. J Exp Biol. 1979 Aug;81:15–32. doi: 10.1242/jeb.81.1.15. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES