Abstract
The conversion of proglucagon and proinsulin by secretory granules isolated from both prelabeled and unlabeled anglerfish islets was investigated. Either granules isolated from tissue labeled with [3H]tryptophan and [14C]isoleucine or [35S]cysteine, or lysed granules from unlabeled tissue to which exogenously labeled prohormones had been added were incubated under various conditions. Acetic acid extracts of these granule preparations were analyzed for prohormone and hormone content by gel filtration. Both prelabeled and lysed, unlabeled secretory granules converted radiolabeled precursor peptides (Mr 8,000- 15,000) to labeled insulin and glucagon. The accuracy of the cleavage process was established by demonstrating comigration of products obtained from in vitro cleavage with insulin and glucagon extracted from intact islets using electrophoresis and high-pressure liquid chromatography (HPLC). The pH optimum for granule-mediated conversion was found to be in the range of pH 4.5-5.5. Conversion of both proglucagon and proinsulin by secretory granules was significantly inhibited in the presence of antipain, leupeptin, p- chloromercuribenzoate (PCMB) or dithiodipyridine (DDP) but not chloroquine, diisopropyl fluorophosphate, EDTA, p-nitrophenyl guanidinobenzoate, soybean trypsin inhibitor, or N-p-tosyl-L-lysine chloromethyl ketone HCl. The inhibitory action of PCMB and DDP was reversed in the presence of dithiothreitol. Both membranous and soluble components of the secretory granules possessed significant converting activity. HPLC and electrophoretic analysis of cleavage products demonstrated that the converting activities of the membranous and soluble components were indistinguishable. The amount of inhibition of proinsulin and proglucagon conversion caused by 600 micrograms/ml porcine proinsulin was significantly lower than that caused by the same concentration of unlabeled anglerfish precursor peptides. These results indicate that the proinsulin and proglucagon converting enzyme(s) in the anglerfish pancreatic islet is a unique intracellular thiol proteinase(s) that may be granule membrane-associated and may require the presence of prohormone sequences in addition to the dibasic residues at cleavage sites for substrate recognition and/or binding.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ansorge S., Kirschke H., Friedrich K. Conversion of proinsulin into insulin by cathepsins B and L from rat liver lysosomes. Acta Biol Med Ger. 1977;36(11-12):1723–1727. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Bromer W. W., Boucher M. E., Patterson J. M., Pekar A. H., Frank B. H. Glucagon structure and function. I. Purification and properties of bovine glucagon and monodesmidoglucagon. J Biol Chem. 1972 Apr 25;247(8):2581–2585. [PubMed] [Google Scholar]
- Creutzfeldt C., Track N. S., Creutzfeldt W. In vitro studies of the rate of proinsulin and insulin turnover in seven human insulinomas. Eur J Clin Invest. 1973 Sep;3(5):371–384. doi: 10.1111/j.1365-2362.1973.tb02203.x. [DOI] [PubMed] [Google Scholar]
- DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
- DIXON T. F., PURDOM M. Serum 5-nucleotidase. J Clin Pathol. 1954 Nov;7(4):341–343. doi: 10.1136/jcp.7.4.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Emdin S. O., Falkmer S. Phylogeny of insulin. Some evolutionary aspects of insulin production with particular regard to the biosynthesis of insulin in Myxine glutinosa. Acta Paediatr Scand Suppl. 1977;(270):15–25. doi: 10.1111/j.1651-2227.1977.tb15117.x. [DOI] [PubMed] [Google Scholar]
- Fletcher D. J., Noe B. D., Bauer G. E., Quigley J. P. Characterization of the conversion of a somatostatin precursor to somatostatin by islet secretory granules. Diabetes. 1980 Aug;29(8):593–599. doi: 10.2337/diab.29.8.593. [DOI] [PubMed] [Google Scholar]
- Habener J. F., Chang H. T., Potts J. T., Jr Enzymic processing of proparathyroid hormone by cell-free extracts of parathyroid glands. Biochemistry. 1977 Aug 23;16(17):3910–3917. doi: 10.1021/bi00636a029. [DOI] [PubMed] [Google Scholar]
- Hobart P. M., Shen L. P., Crawford R., Pictet R. L., Rutter W. J. Comparison of the nucleic acid sequence of anglerfish and mammalian insulin mRNA's from cloned cDNA's. Science. 1980 Dec 19;210(4476):1360–1363. doi: 10.1126/science.7001633. [DOI] [PubMed] [Google Scholar]
- Hobart P., Crawford R., Shen L., Pictet R., Rutter W. J. Cloning and sequence analysis of cDNAs encoding two distinct somatostatin precursors found in the endocrine pancreas of anglerfish. Nature. 1980 Nov 13;288(5787):137–141. doi: 10.1038/288137a0. [DOI] [PubMed] [Google Scholar]
- Howell S. L., Young D. A., Lacy P. E. Isolation and properties of secretory granules from rat islets of Langerhans. 3. Studies of the stability of the isolated beta granules. J Cell Biol. 1969 Apr;41(1):167–176. doi: 10.1083/jcb.41.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobsen H., Demandt A., Moody A. J., Sundby F. Sequence analysis of porcine gut GLI-1. Biochim Biophys Acta. 1977 Aug 23;493(2):452–459. doi: 10.1016/0005-2795(77)90201-x. [DOI] [PubMed] [Google Scholar]
- Johnson R. G., Carlson N. J., Scarpa A. deltapH and catecholamine distribution in isolated chromaffin granules. J Biol Chem. 1978 Mar 10;253(5):1512–1521. [PubMed] [Google Scholar]
- Johnson R. G., Scarpa A., Salganicoff L. The internal pH of isolated serotonin containing granules of pig platelets. J Biol Chem. 1978 Oct 10;253(19):7061–7068. [PubMed] [Google Scholar]
- Kemmler W., Steiner D. F., Borg J. Studies on the conversion of proinsulin to insulin. 3. Studies in vitro with a crude secretion granule fraction isolated from rat islets of Langerhans. J Biol Chem. 1973 Jul 10;248(13):4544–4551. [PubMed] [Google Scholar]
- Malaisse-Lagae F., Amherdt M., Ravazzola M., Sener A., Hutton J. C., Orci L., Malaisse W. J. Role of microtubules in the synthesis, conversion, and release of (pro)insulin. A biochemical and radioautographic study in rat islets. J Clin Invest. 1979 Jun;63(6):1284–1296. doi: 10.1172/JCI109423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noe B. D., Baste C. A., Bauer G. E. Studies on proinsulin and proglucagon biosynthesis and conversion at the subcellular level. I. Fractionation procedure and characterization of the subcellular fractions. J Cell Biol. 1977 Aug;74(2):578–588. doi: 10.1083/jcb.74.2.578. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noe B. D., Bauer G. E. Evidence of sequential metabolic cleavage of proglucagon to glucagon in glucagon biosynthesis. Endocrinology. 1975 Oct;97(4):868–877. doi: 10.1210/endo-97-4-868. [DOI] [PubMed] [Google Scholar]
- Noe B. D., Fletcher D. J., Bauer G. E., Weir G. C., Patel Y. Somatostatin biosynthesis occurs in pancreatic islets. Endocrinology. 1978 Jun;102(6):1675–1685. doi: 10.1210/endo-102-6-1675. [DOI] [PubMed] [Google Scholar]
- Noe B. D., Fletcher D. J., Spiess J. Evidence for the existence of a biosynthetic precursor for somatostatin. Diabetes. 1979 Aug;28(8):724–730. doi: 10.2337/diab.28.8.724. [DOI] [PubMed] [Google Scholar]
- Puri R. B., Anjaneyulu K., Kidwai J. R., Mohan Rao V. K. In vitro conversion of proinsulin to insulin by cathepsin B and role of C-peptide. Acta Diabetol Lat. 1978 Sep-Dec;15(5-6):243–250. doi: 10.1007/BF02590747. [DOI] [PubMed] [Google Scholar]
- SELLINGER O. Z., BEAUFAY H., JACQUES P., DOYEN A., DE DUVE C. Tissue fractionation studies. 15. Intracellular distribution and properties of beta-N-acetylglucosaminidase and beta-galactosidase in rat liver. Biochem J. 1960 Mar;74:450–456. doi: 10.1042/bj0740450. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scheele G. A., Palade G. E., Tartakoff A. M. Cell fractionation studies on the guinea pig pancreas. Redistribution of exocrine proteins during tissue homogenization. J Cell Biol. 1978 Jul;78(1):110–130. doi: 10.1083/jcb.78.1.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sorenson R. L., Lindall A. W., Lazarow A. Studies on the isolated goosefish insulin secretion granule. Diabetes. 1969 Mar;18(3):129–137. doi: 10.2337/diab.18.3.129. [DOI] [PubMed] [Google Scholar]
- Sorenson R. L., Shank R. D., Lindall A. W. Effect of pH on conversion of proinsulin to insulin by a subcellular fraction of rat islets. Proc Soc Exp Biol Med. 1972 Feb;139(2):652–655. doi: 10.3181/00379727-139-36207. [DOI] [PubMed] [Google Scholar]
- Sorenson R. L., Steffes M. W., Lindall A. W. Subcellular localization of proinsulin to insulin conversion in isolated rat islets. Endocrinology. 1970 Jan;86(1):88–96. doi: 10.1210/endo-86-1-88. [DOI] [PubMed] [Google Scholar]
- Sun A. M., Lin B. J., Haist R. E. Studies on the conversion of proinsulin to insulin in the isolated islets of Langerhans in the rat. Can J Physiol Pharmacol. 1973 Mar;51(3):175–182. doi: 10.1139/y73-025. [DOI] [PubMed] [Google Scholar]
- Tager H. S., Markese J. Intestinal and pancreatic glucagon-like peptides. Evidence for identity of higher molecular weight forms. J Biol Chem. 1979 Apr 10;254(7):2229–2233. [PubMed] [Google Scholar]
- Trakatellis A. C., Tada K., Yamaji K., Gardiki-Kouidou P. Isolation and partial characterization of anglefish proglucagon. Biochemistry. 1975 Apr 8;14(7):1508–1512. doi: 10.1021/bi00678a025. [DOI] [PubMed] [Google Scholar]
- Unkeless J., Dano K., Kellerman G. M., Reich E. Fibrinolysis associated with oncogenic transformation. Partial purification and characterization of the cell factor, a plasminogen activator. J Biol Chem. 1974 Jul 10;249(13):4295–4305. [PubMed] [Google Scholar]
- Virji M. A., Vassalli J. D., Estensen R. D., Reich E. Plasminogen activator of islets of Langerhans: modulation by glucose and correlation with insulin production. Proc Natl Acad Sci U S A. 1980 Feb;77(2):875–879. doi: 10.1073/pnas.77.2.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whitaker J. R., Perez-Villase ñor J. Chemical modification of papain. I. Reaction with the chloromethyl ketones of phenylalanine and lysine and with phenylmethyl-sulfonyl fluoride. Arch Biochem Biophys. 1968 Mar 20;124(1):70–78. doi: 10.1016/0003-9861(68)90304-4. [DOI] [PubMed] [Google Scholar]
- Wibo M., Poole B. Protein degradation in cultured cells. II. The uptake of chloroquine by rat fibroblasts and the inhibition of cellular protein degradation and cathepsin B1. J Cell Biol. 1974 Nov;63(2 Pt 1):430–440. doi: 10.1083/jcb.63.2.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamaji K., Tada K., Trakatellis A. C. On the biosynthesis of insulin in anglerfish islets. J Biol Chem. 1972 Jun 25;247(12):4080–4088. [PubMed] [Google Scholar]
- Yip C. C. A bovine pancreatic enzyme catalyzing the conversion of proinsulin to insulin. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1312–1315. doi: 10.1073/pnas.68.6.1312. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoi O. O., Seldin D. C., Spragg J., Pinkus G. S., Austen K. F. Sequential cleavage of proinsulin by human pancreatic kallikrein and a human pancreatic kininase. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3612–3616. doi: 10.1073/pnas.76.8.3612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zühlke H., Kohnert K. D., Jahr H., Schmidt S., Kirschke H., Steiner D. F. Proteolytic and transhydrogenolytic activities in isolated pancreatic islets of rats. Acta Biol Med Ger. 1977;36(11-12):1695–1703. [PubMed] [Google Scholar]