Abstract
The chromosomal complements of mouse oocytes, ova, and fertilizing sperm have been studied by immunofluorescence with specific antisera to the basic protein fraction of sperm nuclei and to histones H2b and H4, and by staining with ethidium bromide. These studies support the hypothesis, previously proposed (Rodman and Barth, 1979, Dev. Biol. 68:82-95), that the chromosomes of the oocyte in maturation incorporate unique basic protein(s) similar to those incorporated during spermiogenesis. That similarity is characterized, here, by immunologic cross-reactivity. The basic proteins of the fertilizing sperm nucleus and the cross-reactive moiety of the two haploid complements of the ovum are displaced simultaneously, shortly after sperm entry. However, because the unique basic proteins incorporated into the oocyte chromosomes do not, as in the spermatogenic sequence, entirely replace the histones, the maternal chromosomes display histones H2b and H4 at all postfertilization stages examined, whereas the decondensing paternal complement, for an interval before maturation of the pronuclei, contains neither sperm basic chromosomal proteins nor histones. Sequential staining of the same specimens with ethidium bromide revealed well-organized nuclear morphology of the residual DNA complex. Those observations suggest that, for an as yet undefined period in the transformation from spermatozoal to embryonic genome, the chromatin is devoid of a complement of basic proteins.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adolph K. W. Organization of chromosomes in HeLa cells: isolation of histone-depleted nuclei and nuclear scaffolds. J Cell Sci. 1980 Apr;42:291–304. doi: 10.1242/jcs.42.1.291. [DOI] [PubMed] [Google Scholar]
- BRADEN A. W., AUSTIN C. R. Fertilization of the mouse egg and the effect of delayed coitus and of hot-shock treatment. Aust J Biol Sci. 1954 Nov;7(4):552–565. doi: 10.1071/bi9540552. [DOI] [PubMed] [Google Scholar]
- Calvin H. I., Bedford J. M. Formation of disulphide bonds in the nucleus and accessory structures of mammalian spermatozoa during maturation in the epididymis. J Reprod Fertil Suppl. 1971 May;13(Suppl):65–75. [PubMed] [Google Scholar]
- Kierszenbaum A. L., Tres L. L. Structural and transcriptional features of the mouse spermatid genome. J Cell Biol. 1975 May;65(2):258–270. doi: 10.1083/jcb.65.2.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolk A. H., Samuel T. Isolation, chemical and immunological characterization of two strongly basic nuclear proteins from human spermatozoa. Biochim Biophys Acta. 1975 Jun 26;393(2):307–319. doi: 10.1016/0005-2795(75)90057-4. [DOI] [PubMed] [Google Scholar]
- Kopecný V., Pavlok A. Autoradiographic study of mouse spermatozoan arginine-rich nuclear protein in fertilization. J Exp Zool. 1975 Jan;191(1):85–96. doi: 10.1002/jez.1401910109. [DOI] [PubMed] [Google Scholar]
- Krishna M., Generoso W. M. Timing of sperm penetration, pronuclear formation, pronuclear DNA synthesis, and first cleavage in naturally ovulated mouse eggs. J Exp Zool. 1977 Nov;202(2):245–252. doi: 10.1002/jez.1402020214. [DOI] [PubMed] [Google Scholar]
- Luthardt F. W., Donahue R. P. Pronuclear DNA synthesis in mouse eggs. An autoradiographic study. Exp Cell Res. 1973 Nov;82(1):143–151. doi: 10.1016/0014-4827(73)90256-5. [DOI] [PubMed] [Google Scholar]
- MONESI V. RIBONUCLEIC ACID SYNTHESIS DURING MITOSIS AND MEIOSIS IN THE MOUSE TESTIS. J Cell Biol. 1964 Sep;22:521–532. doi: 10.1083/jcb.22.3.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marushige Y., Marushige K. Dispersion of mammalian sperm chromatin during fertilization: an in vitro study. Biochim Biophys Acta. 1978 Jun 22;519(1):1–22. doi: 10.1016/0005-2787(78)90058-8. [DOI] [PubMed] [Google Scholar]
- Panyim S., Chalkley R. High resolution acrylamide gel electrophoresis of histones. Arch Biochem Biophys. 1969 Mar;130(1):337–346. doi: 10.1016/0003-9861(69)90042-3. [DOI] [PubMed] [Google Scholar]
- Pruslin F. H., Romani M., Rodman T. C. Interspecies immunologic cross-reactivity of mammalian sperm basic proteins. Exp Cell Res. 1980 Jul;128(1):207–214. doi: 10.1016/0014-4827(80)90404-8. [DOI] [PubMed] [Google Scholar]
- Raftery M. A., Cole R. D. On the aminoethylation of proteins. J Biol Chem. 1966 Aug 10;241(15):3457–3461. [PubMed] [Google Scholar]
- Rodman T. C., Bachvarova R. RNA synthesis in preovulatory mouse oocytes. J Cell Biol. 1976 Jul;70(1):251–257. doi: 10.1083/jcb.70.1.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodman T. C., Barth A. H. Chromosomes of mouse oocytes in maturation: differential trypsin sensitivity and amino acid incorporation. Dev Biol. 1979 Jan;68(1):82–95. doi: 10.1016/0012-1606(79)90245-8. [DOI] [PubMed] [Google Scholar]
- Rodman T. C., Biedler J. L. Specificity of compaction in meiotic chromosomes of the female Chinese hamster. Chromosoma. 1973 Jun 28;42(3):229–246. doi: 10.1007/BF00284773. [DOI] [PubMed] [Google Scholar]
- Rodman T. C., Litwin S. D., Romani M., Vidali G. Life history of mouse sperm protein. Intratesticular stages. J Cell Biol. 1979 Mar;80(3):605–620. doi: 10.1083/jcb.80.3.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stollar B. D., Ward M. Rabbit antibodies to histone fractions as specific reagents for preparative and comparative studies. J Biol Chem. 1970 Mar 25;245(6):1261–1266. [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van der Westhuyzen D. R., Böhm E. L., von Holt C. Fractionation of chicken erythrocyte whole histone into the six main components by gel exclusion chromatography. Biochim Biophys Acta. 1974 Aug 8;359(2):341–345. doi: 10.1016/0005-2795(74)90233-5. [DOI] [PubMed] [Google Scholar]
