Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Sep 1;90(3):803–808. doi: 10.1083/jcb.90.3.803

Vimentin: a phosphoprotein under hormonal regulation

PMCID: PMC2111887  PMID: 7026579

Abstract

Past studies of norepinephrine-stimulated protein phosphorylation in intact C-6 glioma cells had identified a 58,000 molecular weight, 5.7 isoelectric point protein (58K-5.7) as a cyclic AMP-dependent phosphoprotein and had shown that 58K-5.7 was one of the most abundant proteins of the nuclear fraction. Initial experiments of present studies showed that the 58K-5.7 protein remained with the nuclear ghost, or matrix structure, after removal of chromatin. Based on the size, acidity, abundance, nonsolubilization by nonionic detergent and salt, and solubilization by urea, the hypothesis was advanced that the 58K-5.7 protein was the vimentin-type intermediate filament protein. The hypothesis was tested by two types of immunochemical experiments. Antisera against hamster vimentin reacted selectively with only the 58K- 5.7 protein in polyacrylamide gels of urea-solubilized cellular residues (i.e., nonionic detergent and 0.6 M salt-insoluble material) as determined by immunoautoradiography. Antisera against the pure 58K- 5.7 protein of C-6 cells bound selectively to a fibrous array of cellular material typical of vimentin filaments as determined by indirect immunofluorescence. It is concluded that the 58K-5.7 protein is vimentin.

Full Text

The Full Text of this article is available as a PDF (770.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelstein R. S., Conti M. A., Hathaway D. R., Klee C. B. Phosphorylation of smooth muscle myosin light chain kinase by the catalytic subunit of adenosine 3': 5'-monophosphate-dependent protein kinase. J Biol Chem. 1978 Dec 10;253(23):8347–8350. [PubMed] [Google Scholar]
  2. Ames G. F. Resolution of bacterial proteins by polyacrylamide gel electrophoresis on slabs. Membrane, soluble, and periplasmic fractions. J Biol Chem. 1974 Jan 25;249(2):634–644. [PubMed] [Google Scholar]
  3. Bachrach U. Cyclic AMP-mediated induction of ornithine decarboxylase of glioma and neuroblastoma cells. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3087–3091. doi: 10.1073/pnas.72.8.3087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bennett G. S., Fellini S. A., Croop J. M., Otto J. J., Bryan J., Holtzer H. Differences among 100-A filamentilament subunits from different cell types. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4364–4368. doi: 10.1073/pnas.75.9.4364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bordier C., Crettol-Järvinen A. Peptide mapping of heterogeneous protein samples. J Biol Chem. 1979 Apr 25;254(8):2565–2567. [PubMed] [Google Scholar]
  6. Brown S., Levinson W., Spudich J. A. Cytoskeletal elements of chick embryo fibroblasts revealed by detergent extraction. J Supramol Struct. 1976;5(2):119–130. doi: 10.1002/jss.400050203. [DOI] [PubMed] [Google Scholar]
  7. Browning E. T., Brostrom C. O., Groppi V. E., Jr Altered adenosine cyclic 3',5'-monophosphate synthesis and degradation by C-6 astrocytoma cells following prolonged exposure to norepinephrine. Mol Pharmacol. 1976 Jan;12(1):32–40. [PubMed] [Google Scholar]
  8. Browning E. T., Schwartz J. P., Breckenridge B. M. Norepinephrine-sensitive properties of C-6 astrocytoma cells. Mol Pharmacol. 1974 Jan;10(1):162–174. [PubMed] [Google Scholar]
  9. Burridge K. Direct identification of specific glycoproteins and antigens in sodium dodecyl sulfate gels. Methods Enzymol. 1978;50:54–64. doi: 10.1016/0076-6879(78)50007-4. [DOI] [PubMed] [Google Scholar]
  10. Bylund D. B., Krebs E. G. Effect of denaturation on the susceptibility of proteins to enzymic phosphorylation. J Biol Chem. 1975 Aug 25;250(16):6355–6361. [PubMed] [Google Scholar]
  11. Cabral F., Gottesman M. M. Phosphorylation of the 10-nm filament protein from Chinese hamster ovary cells. J Biol Chem. 1979 Jul 25;254(14):6203–6206. [PubMed] [Google Scholar]
  12. Chiu F. C., Korey B., Norton W. T. Intermediate filaments from bovine, rat, and human CNS: mapping analysis of the major proteins. J Neurochem. 1980 May;34(5):1149–1159. doi: 10.1111/j.1471-4159.1980.tb09954.x. [DOI] [PubMed] [Google Scholar]
  13. Franke W. W., Schmid E., Osborn M., Weber K. Different intermediate-sized filaments distinguished by immunofluorescence microscopy. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5034–5038. doi: 10.1073/pnas.75.10.5034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gordon W. E., 3rd, Bushnell A., Burridge K. Characterization of the intermediate (10 nm) filaments of cultured cells using an autoimmune rabbit antiserum. Cell. 1978 Feb;13(2):249–261. doi: 10.1016/0092-8674(78)90194-0. [DOI] [PubMed] [Google Scholar]
  15. Groppi V. E., Jr, Browning E. T. Norepinephrine-dependent protein phosphorylation in intact C-6 glioma cells. Analysis by two-dimensional gel electrophoresis. Mol Pharmacol. 1980 Nov;18(3):427–437. [PubMed] [Google Scholar]
  16. Hynes R. O., Destree A. T. 10 nm filaments in normal and transformed cells. Cell. 1978 Jan;13(1):151–163. doi: 10.1016/0092-8674(78)90146-0. [DOI] [PubMed] [Google Scholar]
  17. Jett M., Seed T. M., Jamieson G. A. Isolation and characterization of plasma membranes and intact nuclei from lymphoid cells. J Biol Chem. 1977 Mar 25;252(6):2134–2142. [PubMed] [Google Scholar]
  18. Johnson E. M. Cyclic AMP-dependent protein kinase and its nuclear substrate proteins. Adv Cyclic Nucleotide Res. 1977;8:267–309. [PubMed] [Google Scholar]
  19. Krebs E. G., Beavo J. A. Phosphorylation-dephosphorylation of enzymes. Annu Rev Biochem. 1979;48:923–959. doi: 10.1146/annurev.bi.48.070179.004423. [DOI] [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Liao C. L., Eng L. F., Herman M. M., Bensch K. G. Glial fibrillary acidic protein-solubility characteristics, relation to cell growth phases and cellular localization in rat C-6 glioma cells: an immunoradiometric and immunohistologic study. J Neurochem. 1978 May;30(5):1181–1186. doi: 10.1111/j.1471-4159.1978.tb12415.x. [DOI] [PubMed] [Google Scholar]
  22. McMorris F. A. Norepinephrine induces glial-specific enzyme activity in cultured plasma glioma cells. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4501–4504. doi: 10.1073/pnas.74.10.4501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nimmo H. G., Cohen P. Hormonal control of protein phosphorylation. Adv Cyclic Nucleotide Res. 1977;8:145–266. [PubMed] [Google Scholar]
  24. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  25. Oey J. Noradrealine induces morphological alterations in nucleated and enucleated rat C6 glioma cells. Nature. 1975 Sep 25;257(5524):317–319. doi: 10.1038/257317a0. [DOI] [PubMed] [Google Scholar]
  26. Paetau A., Virtanen I., Stenman S., Kurki P., Linder E., Vaheri A., Westermark B., Dahl D., Haltia M. Glial fibrillary acidic protein and intermediate filaments in human glioma cells. Acta Neuropathol. 1979 Jun 15;47(1):71–74. doi: 10.1007/BF00698276. [DOI] [PubMed] [Google Scholar]
  27. Rueger D. C., Huston J. S., Dahl D., Bignami A. Formation of 100 A filaments from purified glial fibrillary acidic protein in vitro. J Mol Biol. 1979 Nov 25;135(1):53–68. doi: 10.1016/0022-2836(79)90340-1. [DOI] [PubMed] [Google Scholar]
  28. Sanders M. M. Fractionation of nucleosomes by salt elution from micrococcal nuclease-digested nuclei. J Cell Biol. 1978 Oct;79(1):97–109. doi: 10.1083/jcb.79.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sanders M. M., Groppi V. E., Jr, Browning E. T. Resolution of basic cellular proteins including histone variants by two-dimensional gel electrophoresis: evaluation of lysine to arginine ratios and phosphorylation. Anal Biochem. 1980 Mar 15;103(1):157–165. doi: 10.1016/0003-2697(80)90250-x. [DOI] [PubMed] [Google Scholar]
  30. Schwartz J. P., Costa E. Regulation of nerve growth factor content in C6 glioma cells by beta-adrenergic receptor stimulation. Naunyn Schmiedebergs Arch Pharmacol. 1977 Nov;300(2):123–129. doi: 10.1007/BF00505042. [DOI] [PubMed] [Google Scholar]
  31. Schwartz J. P., Costa E. beta Adrenergic receptor-mediated regulation of cyclic nucleotide phosphodiesterase in C6 glioma cells: vinblastine blockade of isoproterenol induction. J Pharmacol Exp Ther. 1980 Mar;212(3):569–572. [PubMed] [Google Scholar]
  32. Schwartz J. P., Morris N. R., Breckenridge B. M. Adenosine 3',5'-monophosphate in glial tumor cells. Alterations by 5-bromodeoxyuridine. J Biol Chem. 1973 Apr 25;248(8):2699–2704. [PubMed] [Google Scholar]
  33. Schwartz J. P., Passonneau J. V. Cyclic AMP-mediated induction of the cyclic AMP phosphodiesterase of C-6 glioma cells. Proc Natl Acad Sci U S A. 1974 Oct;71(10):3844–3848. doi: 10.1073/pnas.71.10.3844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Starger J. M., Brown W. E., Goldman A. E., Goldman R. D. Biochemical and immunological analysis of rapidly purified 10-nm filaments from baby hamster kidney (BHK-21) cells. J Cell Biol. 1978 Jul;78(1):93–109. doi: 10.1083/jcb.78.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Starger J. M., Goldman R. D. Isolation and preliminary characterization of 10-nm filaments from baby hamster kidney (BHK-21) cells. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2422–2426. doi: 10.1073/pnas.74.6.2422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wolfe L. C., Lux S. E. Membrane protein phosphorylation of intact normal and hereditary spherocytic erythrocytes. J Biol Chem. 1978 May 10;253(9):3336–3342. [PubMed] [Google Scholar]
  37. Yen S. H., Fields K. L. Antibodies to neurofilament, glial filament, and fibroblast intermediate filament proteins bind to different cell types of the nervous system. J Cell Biol. 1981 Jan;88(1):115–126. doi: 10.1083/jcb.88.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES