Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Sep 1;90(3):705–710. doi: 10.1083/jcb.90.3.705

Mobility of surface proteins on normal rat macrophages and on a "macrophagelike" rat tumor

PMCID: PMC2111899  PMID: 6974736

Abstract

Peritoneal macrophages endocytosed their histocompatibility antigens (RT1), Fc receptors (FcR), and concanavalin A (Con A) receptors after cross-linking by ligands, but did not cap these membrane proteins. The 323N cell, a "macrophage like" tumor cell, under identical conditions capped its surface proteins. Experiments measuring fluorescence recovery after photobleaching showed that the mobile fraction of RT1 was significantly greater in 323N cells than in normal peritoneal macrophages. Presumably, the membrane proteins of 323N are not as tethered to the cytoskeleton, or, if so, are in a nexus that is not the same as that which occurs between membrane proteins of normal macrophages and the cytoskeleton. The mobility of RT1 on normal lymphocytes was also different from that of macrophages. These observations suggest that the movement of membrane molecules is determined by cell type and is regulated by the cytoskeleton which varies in structure and function from cell type to cell type.

Full Text

The Full Text of this article is available as a PDF (611.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ben-Bassat H., Polliak A., Rosenbaum S. M., Naparstek E., Shouval D., Inbar M. Fluidity of membrane lipids and lateral mobility of concanavalin A receptors in the cell surface of normal lymphocytes and lymphocytes from patients with malignant lymphomas and leukemias. Cancer Res. 1977 May;37(5):1307–1312. [PubMed] [Google Scholar]
  2. Bourguignon L. Y., Singer S. J. Transmembrane interactions and the mechanism of capping of surface receptors by their specific ligands. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5031–5035. doi: 10.1073/pnas.74.11.5031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Braun J., Fujiwara K., Pollard T. D., Unanue E. R. Two distinct mechanisms for redistribution of lymphocyte surface macromolecules. I. Relationship to cytoplasmic myosin. J Cell Biol. 1978 Nov;79(2 Pt 1):409–418. doi: 10.1083/jcb.79.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dragsten P., Henkart P., Blumenthal R., Weinstein J., Schlessinger J. Lateral diffusion of surface immunoglobulin, Thy-1 antigen, and a lipid probe in lymphocyte plasma membranes. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5163–5167. doi: 10.1073/pnas.76.10.5163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eldridge C. A., Elson E. L., Webb W. W. Fluorescence photobleaching recovery measurements of surface lateral mobilities on normal and SV40-transformed mouse fibroblasts. Biochemistry. 1980 May 13;19(10):2075–2079. doi: 10.1021/bi00551a011. [DOI] [PubMed] [Google Scholar]
  6. Geiduschek J. B., Singer S. J. Molecular changes in the membranes of mouse erythroid cells accompanying differentiation. Cell. 1979 Jan;16(1):149–163. doi: 10.1016/0092-8674(79)90196-x. [DOI] [PubMed] [Google Scholar]
  7. Golan D. E., Veatch W. Lateral mobility of band 3 in the human erythrocyte membrane studied by fluorescence photobleaching recovery: evidence for control by cytoskeletal interactions. Proc Natl Acad Sci U S A. 1980 May;77(5):2537–2541. doi: 10.1073/pnas.77.5.2537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mandel G., Clark W. Functional properties of EL-4 tumor cells with lipid-altered membranes. J Immunol. 1978 May;120(5):1637–1643. [PubMed] [Google Scholar]
  9. Nicolson G. L. Trans-membrane control of the receptors on normal and tumor cells. II. Surface changes associated with transformation and malignancy. Biochim Biophys Acta. 1976 Apr 30;458(1):1–72. doi: 10.1016/0304-419x(76)90014-7. [DOI] [PubMed] [Google Scholar]
  10. Poste G., Papahadjopoulos D., Jacobson K., Vail W. J. Local anaesthetics increase susceptibility of untransformed cells to agglutination by concanavalin A. Nature. 1975 Feb 13;253(5492):552–554. doi: 10.1038/253552a0. [DOI] [PubMed] [Google Scholar]
  11. Schlessinger J., Axelrod D., Koppel D. E., Webb W. W., Elson E. L. Lateral transport of a lipid probe and labeled proteins on a cell membrane. Science. 1977 Jan 21;195(4275):307–309. doi: 10.1126/science.556653. [DOI] [PubMed] [Google Scholar]
  12. Schlessinger J., Koppel D. E., Axelrod D., Jacobson K., Webb W. W., Elson E. L. Lateral transport on cell membranes: mobility of concanavalin A receptors on myoblasts. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2409–2413. doi: 10.1073/pnas.73.7.2409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Walter R. J., Berlin R. D., Pfeiffer J. R., Oliver J. M. Polarization of endocytosis and receptor topography on cultured macrophages. J Cell Biol. 1980 Jul;86(1):199–211. doi: 10.1083/jcb.86.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Willingham M. C., Yamada K. M., Yamada S. S., Pouysségur J., Pastan I. Microfilament bundles and cell shape are related to adhesiveness to substratum and are dissociable from growth control in cultured fibroblasts. Cell. 1977 Mar;10(3):375–380. doi: 10.1016/0092-8674(77)90024-1. [DOI] [PubMed] [Google Scholar]
  15. Woda B. A., Feldman J. D. Density of surface immunoglobulin and capping on rat B lymphocytes. I. Changes with aging. J Exp Med. 1979 Feb 1;149(2):416–423. doi: 10.1084/jem.149.2.416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Woda B. A., Yguerabide J., Feldman J. D. Mobility and density of AgB, "Ia", and Fc receptors on the surface of lymphocytes from young and old rats. J Immunol. 1979 Nov;123(5):2161–2167. [PubMed] [Google Scholar]
  17. Woda B. A., Yguerabide J., Feldman J. D. The effect of local anesthetics on the lateral mobility of lymphocyte membrane proteins. Exp Cell Res. 1980 Apr;126(2):327–331. doi: 10.1016/0014-4827(80)90271-2. [DOI] [PubMed] [Google Scholar]
  18. Zucker-Franklin D., Liebes L. F., Silber R. Differences in the behavior of the membrane and membrane-associated filamentous structures in normal and chronic lymphocytic leukemia (CLL) lymphocytes. J Immunol. 1979 Jan;122(1):97–107. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES