Abstract
Different stratified squamous epithelia, whether they bear a stratum corneum or not, are shown by immunofluorescence to possess the precursor protein of the cross-linked envelope that is characteristic of epidermal s. corneum. This protein, involucrin, is not present in the deepest epithelial cells but appears in the course of their outward migration. The boundary at which involucrin first appears can sometimes by correlated with a visible boundary between zones of large and small cells. Cultured keratinocytes, derived from all stratified squamous epithelia (epidermal, corneal, conjuctival, esophageal, lingual, and vaginal), form colonies that grow together to form a stratified epithelium. The cells of the basal layer are nearly always free of detectable involucrin, but, in contrast to the natural epithelium, this protein usually makes its appearance in the cells immediately above the basal layer. When a cultured epithelium derived from epidermal keratinocytes is detached and applied as a graft to animals, the cells flatten and the distinctness of the basal layer is at first reduced; but with time the organization of the epithelium becomes more characteristic of epidermis. Cell size and shape become more orderly along the cell migration pathway, and involucrin first appears at some distance from the basal layer, instead of in immediately suprabasal cells, as in the cultured epithelium. The progeny of dissociated and cultured keratinocytes are therefore able, when grafted, to reassemble an epidermis in which the timing of specific gene expression is restored to that of the original tissue.
Full Text
The Full Text of this article is available as a PDF (848.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albrecht-Buehler G. Group locomotion of PtK1 cells. Exp Cell Res. 1979 Sep;122(2):402–407. doi: 10.1016/0014-4827(79)90319-7. [DOI] [PubMed] [Google Scholar]
- Banks-Schlegel S., Green H. Formation of epidermis by serially cultivated human epidermal cells transplanted as an epithelium to athymic mice. Transplantation. 1980 Apr;29(4):308–313. doi: 10.1097/00007890-198004000-00010. [DOI] [PubMed] [Google Scholar]
- Doran T. I., Vidrich A., Sun T. T. Intrinsic and extrinsic regulation of the differentiation of skin, corneal and esophageal epithelial cells. Cell. 1980 Nov;22(1 Pt 1):17–25. doi: 10.1016/0092-8674(80)90150-6. [DOI] [PubMed] [Google Scholar]
- Eisinger M., Monden M., Raaf J. H., Fortner J. G. Wound coverage by a sheet of epidermal cells grown in vitro from dispersed single cell preparations. Surgery. 1980 Aug;88(2):287–293. [PubMed] [Google Scholar]
- Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet. 1981 Jan 10;1(8211):75–78. [PubMed] [Google Scholar]
- Green H. Cyclic AMP in relation to proliferation of the epidermal cell: a new view. Cell. 1978 Nov;15(3):801–811. doi: 10.1016/0092-8674(78)90265-9. [DOI] [PubMed] [Google Scholar]
- Green H., Kehinde O., Thomas J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5665–5668. doi: 10.1073/pnas.76.11.5665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green H. Terminal differentiation of cultured human epidermal cells. Cell. 1977 Jun;11(2):405–416. doi: 10.1016/0092-8674(77)90058-7. [DOI] [PubMed] [Google Scholar]
- Green H. The keratinocyte as differentiated cell type. Harvey Lect. 1980;74:101–139. [PubMed] [Google Scholar]
- Green H., Thomas J. Pattern formation by cultured human epidermal cells: development of curved ridges resembling dermatoglyphs. Science. 1978 Jun 23;200(4348):1385–1388. doi: 10.1126/science.663617. [DOI] [PubMed] [Google Scholar]
- Karasek M. A. Growth and differentiation of transplanted epithelial cell cultures. J Invest Dermatol. 1968 Oct;51(4):247–252. doi: 10.1038/jid.1968.122. [DOI] [PubMed] [Google Scholar]
- RODRIGUEZ J., DEINHARDT F. Preparation of a semipermanent mounting medium for fluorescent antibody studies. Virology. 1960 Oct;12:316–317. doi: 10.1016/0042-6822(60)90205-1. [DOI] [PubMed] [Google Scholar]
- Rheinwald J. G., Green H. Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes. Nature. 1977 Feb 3;265(5593):421–424. doi: 10.1038/265421a0. [DOI] [PubMed] [Google Scholar]
- Rheinwald J. G., Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975 Nov;6(3):331–343. doi: 10.1016/s0092-8674(75)80001-8. [DOI] [PubMed] [Google Scholar]
- Rice R. H., Green H. Presence in human epidermal cells of a soluble protein precursor of the cross-linked envelope: activation of the cross-linking by calcium ions. Cell. 1979 Nov;18(3):681–694. doi: 10.1016/0092-8674(79)90123-5. [DOI] [PubMed] [Google Scholar]
- Rice R. H., Green H. The cornified envelope of terminally differentiated human epidermal keratinocytes consists of cross-linked protein. Cell. 1977 Jun;11(2):417–422. doi: 10.1016/0092-8674(77)90059-9. [DOI] [PubMed] [Google Scholar]
- Rowden G. Ultrastructural studies of keratinized epithelia of the mouse. III. Determination of the volumes of nuclei and cytoplasm of cells in murine epidermis. J Invest Dermatol. 1975 Jan;64(1):1–3. doi: 10.1111/1523-1747.ep12540840. [DOI] [PubMed] [Google Scholar]
- Savage C. R., Jr, Cohen S. Epidermal growth factor and a new derivative. Rapid isolation procedures and biological and chemical characterization. J Biol Chem. 1972 Dec 10;247(23):7609–7611. [PubMed] [Google Scholar]
- Sun T. T., Green H. Cultured epithelial cells of cornea, conjunctiva and skin: absence of marked intrinsic divergence of their differentiated states. Nature. 1977 Oct 6;269(5628):489–493. doi: 10.1038/269489a0. [DOI] [PubMed] [Google Scholar]
- Sun T. T., Green H. Differentiation of the epidermal keratinocyte in cell culture: formation of the cornified envelope. Cell. 1976 Dec;9(4 Pt 1):511–521. doi: 10.1016/0092-8674(76)90033-7. [DOI] [PubMed] [Google Scholar]
- Watt F. M., Green H. Involucrin synthesis is correlated with cell size in human epidermal cultures. J Cell Biol. 1981 Sep;90(3):738–742. doi: 10.1083/jcb.90.3.738. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Worst P. K., Valentine E. A., Fusenig N. E. Formation of epidermis after reimplantation of pure primary epidermal cell cultures from perinatal mouse skin. J Natl Cancer Inst. 1974 Oct;53(4):1061–1064. doi: 10.1093/jnci/53.4.1061. [DOI] [PubMed] [Google Scholar]
- Yardley H. J., Goldstein D. J. Changes in dry weight and projected area of human epidermal cells undergoing keratinization as determined by scanning interference microscopy. Br J Dermatol. 1976 Dec;95(6):621–626. doi: 10.1111/j.1365-2133.1976.tb07034.x. [DOI] [PubMed] [Google Scholar]
- Yuspa S. H., Morgan D. L., Walker R. J., Bates R. R. The growth of fetal mouse skin in cell culture and transplantation to F1 mice. J Invest Dermatol. 1970 Dec;55(6):379–389. doi: 10.1111/1523-1747.ep12260498. [DOI] [PubMed] [Google Scholar]