Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Oct 1;91(1):287–292. doi: 10.1083/jcb.91.1.287

Ultrastructural localization of cyclic GMP and cyclic AMP in rat striatum

PMCID: PMC2111920  PMID: 6271792

Abstract

The subcellular localization of cyclic GMP and cyclic AMP in the rat caudate-putamen has been studied using horseradish peroxidase immunocytochemistry. Both of the putative neurotransmitter second messengers were visualized in neurons and glial cells at light microscopic resolutions, but not all cells of either category gave detectable staining. This was confirmed at the ultrastructural level where both stained and unstained elements of the same cell type were found within the same field. A striking variation was seen in cyclic nucleotide staining intensity within individual neural and glial cells. Both of the cyclic nucleotides were detected within postsynaptic terminal boutons and within astroglial processes. Cyclic GMP postsynaptic staining was stronger than glial staining, whereas the localization pattern was reversed for cyclic AMP. The synaptic localization of cyclic AMP and cyclic GMP immunoreactivity adds support to the idea that these compounds have an influential role in synaptic function within the striatum.

Full Text

The Full Text of this article is available as a PDF (890.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ariano M. A., Adinolfi A. M. Subcellular localization of cyclic nucleotide phosphodiesterase in the caudate nucleus. Exp Neurol. 1977 Apr;55(1):84–94. doi: 10.1016/0014-4886(77)90160-1. [DOI] [PubMed] [Google Scholar]
  2. Ariano M. A., Appleman M. M. Biochemical characterization of postsynaptically localized cyclic nucleotide phosphodiesterase. Brain Res. 1979 Nov 16;177(2):301–309. doi: 10.1016/0006-8993(79)90781-9. [DOI] [PubMed] [Google Scholar]
  3. Ariano M. A., Butcher L. L., Appleman M. M. Cyclic nucleotides in the rat caudate-putamen complex: histochemical characterization and effects of deafferentation and kainic acid infusion. Neuroscience. 1980;5(7):1269–1276. doi: 10.1016/0306-4522(80)90199-2. [DOI] [PubMed] [Google Scholar]
  4. Biggio G., Guidotti A. Climbing fiver activation and 3', 5'-cyclic guanosine monophosphate (cGMP) content in cortex and deep nuclei of cerebellum. Brain Res. 1976 May 7;107(2):365–373. doi: 10.1016/0006-8993(76)90233-x. [DOI] [PubMed] [Google Scholar]
  5. Chan-Palay V., Palay S. L. Immunocytochemical localization of cyclic GMP: light and electron microscope evidence for involvement of neuroglia. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1485–1488. doi: 10.1073/pnas.76.3.1485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fallon E. F., Agrawal R., Furth E., Steiner A. L., Cowden R. Cyclic guanosine and adenosine 3',5'-monophosphates in canine thyroid: localization by immunofluorescence. Science. 1974 Jun 7;184(4141):1089–1091. doi: 10.1126/science.184.4141.1089. [DOI] [PubMed] [Google Scholar]
  7. Ferrendelli J. A., Kinscherf D. A., Chang M. M. Regulation of levels of guanosine cyclic 3',5'-monophosphate in the central nervous system: effects of depolarizing agents. Mol Pharmacol. 1973 Jul;9(4):445–454. [PubMed] [Google Scholar]
  8. Frey W. H., 2nd, Senogles S. E., Heston L. L., Tuason V. B., Nicol S. E. Catecholamine-sensitive guanylate cyclase from human caudate nucleus. J Neurochem. 1980 Dec;35(6):1418–1430. doi: 10.1111/j.1471-4159.1980.tb09018.x. [DOI] [PubMed] [Google Scholar]
  9. Gilman A. G., Nirenberg M. Effect of catecholamines on the adenosine 3':5'-cyclic monophosphate concentrations of clonal satellite cells of neurons. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2165–2168. doi: 10.1073/pnas.68.9.2165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goldberg A. L., Singer J. J. Evidence for a role of cyclic AMP in neuromuscular transmission. Proc Natl Acad Sci U S A. 1969 Sep;64(1):134–141. doi: 10.1073/pnas.64.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kebabian J. W., Blood F. E., Steiner A. L., Greengard P. Neurotransmitters increase cyclic nucleotides in postganglionic neurons: immunocytochemical demonstration. Science. 1975 Oct 10;190(4210):157–159. doi: 10.1126/science.241121. [DOI] [PubMed] [Google Scholar]
  12. Kebabian J. W., Steiner A. L., Greengard P. Muscarinic cholinergic regulation of cyclic guanosine 3,5-monophosphate in autonomic ganglia: possible role in synaptic transmission. J Pharmacol Exp Ther. 1975 May;193(2):474–488. [PubMed] [Google Scholar]
  13. Lee T. P., Kuo J. F., Greengard P. Role of muscarinic cholinergic receptors in regulation of guanosine 3':5'-cyclic monophosphate content in mammalian brain, heart muscle, and intestinal smooth muscle. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3287–3291. doi: 10.1073/pnas.69.11.3287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mattsson H. Bicyclic phosphates increase the cyclic GMP level in rat cerebellum, presumably due to reduced GABA inhibition. Brain Res. 1980 Jan 6;181(1):175–184. doi: 10.1016/0006-8993(80)91267-6. [DOI] [PubMed] [Google Scholar]
  15. McAfee D. A., Schorderet M., Greengard P. Adenosine 3',5'-monophosphate in nervous tissue: increase associated with synaptic transmission. Science. 1971 Mar 19;171(3976):1156–1158. doi: 10.1126/science.171.3976.1156. [DOI] [PubMed] [Google Scholar]
  16. Quenzer L. F., Patterson B. A., Volle R. L. K+-induced accumulation of guanosine 3',5'-monophosphate in sympathetic ganglia. J Neurochem. 1980 Jun;34(6):1782–1784. doi: 10.1111/j.1471-4159.1980.tb11278.x. [DOI] [PubMed] [Google Scholar]
  17. Seeds N. W., Gilman A. G. Norepinephrine stinulated increase of cyclic AMP levels in developing mouse brain cell cultures. Science. 1971 Oct 15;174(4006):292–292. doi: 10.1126/science.174.4006.292. [DOI] [PubMed] [Google Scholar]
  18. Spruill W. A., Steiner A. L. Cyclic nucleotide and protein kinase immunocytochemistry. Adv Cyclic Nucleotide Res. 1979;10:169–186. [PubMed] [Google Scholar]
  19. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  20. Weight F. F., Petzold G., Greengard P. Guanosine 3',5'-monophosphate in sympathetic ganglia: increase assoicated with synaptic transmission. Science. 1974 Dec 6;186(4167):942–944. doi: 10.1126/science.186.4167.942. [DOI] [PubMed] [Google Scholar]
  21. Wooten G. F., Thoa N. B., Kopin I. J., Axelrod J. Enhanced release of dopamine -hydroxylase and norepinephrine from sympathetic nerves by dibutyryl cyclic adenosine 3', 5'-monophosphate and theophylline. Mol Pharmacol. 1973 Mar;9(2):178–183. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES