Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Oct 1;91(1):167–174. doi: 10.1083/jcb.91.1.167

Biochemical studies of the excitable membrane of Paramecium tetraurelia VI. Endogenous protein substrates for in vitro and in vivo phosphorylation in cilia and ciliary membranes

PMCID: PMC2111921  PMID: 6271790

Abstract

The endogenous protein kinases of isolated Paramecium tetraurelia cilia phosphorylated approximately 30 ciliary polypeptides in vitro. Labeling with [gamma-32P]ATP was not proportional to the amount of each protein in cilia; some minor polypeptides (e.g., 67,000 and 180,000 mol wt) were more heavily labeled than some major polypeptides. Certain of the endogenous substrates for protein kinase were localized in the ciliary membrane (130,000, 86,000, 67,000, and 45,000 mol wt); others were found in axonemes or in both fractions. With cilia from bacterized cultures in the undefined Cerophyl medium, the labeling of specific endogenous phosphate acceptors was altered by pH, cyclic AMP, and cyclic GMP, but the labeling pattern was not affected by the presence of Na+ or K+ (15 mM), Ba++ (5 mM), Ca++ (10(-5) or 10(-4) M), or EGTA. Very similar results were obtained with cilia from cells grown axenically in a semidefined medium; the molecular weights and the extent of phosphorylation of the phosphopolypeptides were comparable to those of cilia from bacterized Cerophyl cultures, although no significant cyclic nucleotide effects were observed in the axenic cilia. Most of the phosphopolypeptides labeled in vitro also turned over rapidly in vitro. The phosphoprotein phosphatase responsible for turnover was partially inhibited by 5 mM NaF. The pattern of ciliary polypeptides labeled in vivo was similar to that observed in the in vitro experiments, although the relative intensities of labeling differed. Six behavioral mutants of Paramecium, known to have defects in the excitable membrane that regulates the ciliary beat, showed normal patterns of ciliary protein phosphorylation in vitro, with and without added cyclic nucleotides, at both pH 6.0 and pH 8.0. The mutants also had apparently normal phosphoprotein phosphatase. The Paranoiac A mutant, however, showed a reduction in cyclic GMP- stimulated protein kinase activity.

Full Text

The Full Text of this article is available as a PDF (947.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adoutte A., Ramanathan R., Lewis R. M., Dute R. R., Ling K. Y., Kung C., Nelson D. L. Biochemical studies of the excitable membrane of Paramecium tetraurelia. III. Proteins of cilia and ciliary membranes. J Cell Biol. 1980 Mar;84(3):717–738. doi: 10.1083/jcb.84.3.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ames G. F. Resolution of bacterial proteins by polyacrylamide gel electrophoresis on slabs. Membrane, soluble, and periplasmic fractions. J Biol Chem. 1974 Jan 25;249(2):634–644. [PubMed] [Google Scholar]
  3. Andrews D., Nelson D. L. Biochemical studies of the excitable membrane of Paramecium tetraurelia. II. Phospholipids of ciliary and other membranes. Biochim Biophys Acta. 1979 Jan 19;550(2):174–187. doi: 10.1016/0005-2736(79)90205-0. [DOI] [PubMed] [Google Scholar]
  4. Brostrom C. O., Corbin J. D., King C. A., Krebs E. G. Interaction of the subunits of adenosine 3':5'-cyclic monophosphate-dependent protein kinase of muscle. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2444–2447. doi: 10.1073/pnas.68.10.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Catalán R. E., Aragones M. D., Martinez A. M., Armijo M., Piña M. Effect of indomethacin on the cyclic AMP-dependent protein kinase. Eur J Pharmacol. 1980 May 2;63(2-3):187–190. doi: 10.1016/0014-2999(80)90443-4. [DOI] [PubMed] [Google Scholar]
  6. Dute R., Kung C. Ultrastructure of the proximal region of somatic cilia in Paramecium tetraurelia. J Cell Biol. 1978 Aug;78(2):451–464. doi: 10.1083/jcb.78.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eckert R. Bioelectric control of ciliary activity. Science. 1972 May 5;176(4034):473–481. doi: 10.1126/science.176.4034.473. [DOI] [PubMed] [Google Scholar]
  8. Eckert R., Brehm P. Ionic mechanisms of excitation in Paramecium. Annu Rev Biophys Bioeng. 1979;8:353–383. doi: 10.1146/annurev.bb.08.060179.002033. [DOI] [PubMed] [Google Scholar]
  9. Goueli S. A., Ahmed K. Indomethacin and inhibition of protein kinase reactions. Nature. 1980 Sep 11;287(5778):171–172. doi: 10.1038/287171a0. [DOI] [PubMed] [Google Scholar]
  10. Greengard P. Phosphorylated proteins as physiological effectors. Science. 1978 Jan 13;199(4325):146–152. doi: 10.1126/science.22932. [DOI] [PubMed] [Google Scholar]
  11. Haddox M. K., Newton N. E., Hartle D. K., Goldberg N. D. ATP(Mg 2+ ) induced inhibition of cyclic AMP reactivity with a skeletal muscle protein kinase. Biochem Biophys Res Commun. 1972 May 26;47(4):653–661. doi: 10.1016/0006-291x(72)90542-6. [DOI] [PubMed] [Google Scholar]
  12. Hoskins D. D. Adenine nucleotide mediation of fructolysis and motility in bovine epididymal spermatozoa. J Biol Chem. 1973 Feb 25;248(4):1135–1140. [PubMed] [Google Scholar]
  13. Kantor H. S., Hampton M. Indomethacin in submicromolar concentrations inhibits cyclic AMP-dependent protein kinase. Nature. 1978 Dec 21;276(5690):841–842. doi: 10.1038/276841a0. [DOI] [PubMed] [Google Scholar]
  14. Krebs E. G., Beavo J. A. Phosphorylation-dephosphorylation of enzymes. Annu Rev Biochem. 1979;48:923–959. doi: 10.1146/annurev.bi.48.070179.004423. [DOI] [PubMed] [Google Scholar]
  15. Kuo J. F., Greengard P. An adenosine 3',5'-monophosphate-dependent protein kinase from Escherichia coli. J Biol Chem. 1969 Jun 25;244(12):3417–3419. [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Lewis R. M., Nelson D. L. Biochemical studies of the excitable membrane of Paramecium. IV. Protein kinase activities of cilia and ciliary membrane. Biochim Biophys Acta. 1980 Oct;615(2):341–353. doi: 10.1016/0005-2744(80)90501-x. [DOI] [PubMed] [Google Scholar]
  19. Morton B., Harrigan-Lum J., Albagli L., Jooss T. The activation of motility in quiescent hamster sperm from the epididymis by calcium and cyclic nucleotides. Biochem Biophys Res Commun. 1974 Jan 23;56(2):372–379. doi: 10.1016/0006-291x(74)90852-3. [DOI] [PubMed] [Google Scholar]
  20. Murofushi H. Protein kinases in Tetrahymena cilia. II. Partial purification and characterization of adenosine 3',5'-monophosphate-dependent and guanosine 3',5'-monophosphate-dependent protein kinases. Biochim Biophys Acta. 1974 Nov 25;370(1):130–139. doi: 10.1016/0005-2744(74)90039-4. [DOI] [PubMed] [Google Scholar]
  21. Nelson D. L., Kornberg A. Biochemical studies of bacterial sporulation and germination. XIX. Phosphate metabolism during sporulation. J Biol Chem. 1970 Mar 10;245(5):1137–1145. [PubMed] [Google Scholar]
  22. ORNSTEIN L. DISC ELECTROPHORESIS. I. BACKGROUND AND THEORY. Ann N Y Acad Sci. 1964 Dec 28;121:321–349. doi: 10.1111/j.1749-6632.1964.tb14207.x. [DOI] [PubMed] [Google Scholar]
  23. Piperno G., Huang B., Ramanis Z., Luck D. J. Radial spokes of Chlamydomonas flagella: polypeptide composition and phosphorylation of stalk components. J Cell Biol. 1981 Jan;88(1):73–79. doi: 10.1083/jcb.88.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Piperno G., Luck D. J. Phosphorylation of axonemal proteins in Chlamydomonas reinhardtii. J Biol Chem. 1976 Apr 10;251(7):2161–2167. [PubMed] [Google Scholar]
  25. Prince D. J., Gibson I. Ultrastructural and functional differences in mitochondria isolated from Paramecium aurelia grown axenically and monoxenically. Biochem Biophys Res Commun. 1978 Nov 29;85(2):519–525. doi: 10.1016/0006-291x(78)91194-4. [DOI] [PubMed] [Google Scholar]
  26. Rhoads D. E., Kaneshiro E. S. Characterizations of phospholipids from Paramecium tetraurelia cells and cilia. J Protozool. 1979 May;26(2):329–338. doi: 10.1111/j.1550-7408.1979.tb02790.x. [DOI] [PubMed] [Google Scholar]
  27. Rubin C. S., Rosen O. M. Protein phosphorylation. Annu Rev Biochem. 1975;44:831–887. doi: 10.1146/annurev.bi.44.070175.004151. [DOI] [PubMed] [Google Scholar]
  28. Rubin R. W., Filner P. Adenosine 3',5'-cyclic monophosphate in Chlamydomonas reinhardtii. Influence on flagellar function and regeneration. J Cell Biol. 1973 Mar;56(3):628–635. doi: 10.1083/jcb.56.3.628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Saimi Y., Kung C. A Ca-induced Na-current in Paramecium. J Exp Biol. 1980 Oct;88:305–325. doi: 10.1242/jeb.88.1.305. [DOI] [PubMed] [Google Scholar]
  30. Schendel P. F., Wells R. D. The synthesis and purification of (gamma-32P)-adenosine triphosphate with high specific activity. J Biol Chem. 1973 Dec 10;248(23):8319–8321. [PubMed] [Google Scholar]
  31. Schultz J. E., Jantzen H. M. Cyclic nucleotide-dependent protein kinases from cilia of Paramecium tetraurelia: partial purification and characterization. FEBS Lett. 1980 Jul 11;116(1):75–78. doi: 10.1016/0014-5793(80)80532-1. [DOI] [PubMed] [Google Scholar]
  32. Schultz J. E., Klumpp S. Guanylate cyclase in the excitable ciliary membrane of Paramecium. FEBS Lett. 1980 Dec 15;122(1):64–66. doi: 10.1016/0014-5793(80)80402-9. [DOI] [PubMed] [Google Scholar]
  33. Shusterman C. L., Thiede E. W., Kung C. K-resistant mutants and "adaptation" in Paramecium. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5645–5649. doi: 10.1073/pnas.75.11.5645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tao M., Hackett P. Adenosine cyclic 3':5'-monophosphate-dependent protein kinase from rabbit erythrocytes. Purification and characterization of multiple forms. J Biol Chem. 1973 Aug 10;248(15):5324–5332. [PubMed] [Google Scholar]
  35. Wolfe J. Cell division, ciliary regeneration and cyclic AMP in a unicellular system. J Cell Physiol. 1973 Aug;82(1):39–48. doi: 10.1002/jcp.1040820105. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES