Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Oct 1;91(1):113–125. doi: 10.1083/jcb.91.1.113

Addition of lipid to the photosynthetic membrane: effects on membrane structure and energy transfer

PMCID: PMC2111922  PMID: 7298712

Abstract

We have carried out a series of experiments in which the lipid composition of the photosynthetic membrane has been altered by the addition of lipid from a defined source under experimental conditions. Liposomes prepared by sonication are mixed with purified photosynthetic membranes obtained from spinach chloroplasts and are taken through cycles of freezing and thawing. Several lines of evidence, including gel electrophoresis and freeze-fracture electron microscopy, indicate that an actual addition of lipid has taken place. Structural analysis by freeze-fracture shows that intramembrane particles are widely separated after the addition of large amounts of lipid, with one exception: large hexagonal lattices of particles appear in some regions of the membrane. These lattices are identical in appearance with lattices formed from a single purified component of the membrane known as chlorophyll-protein complex II. The suggestion that the presence of such lattices in lipid-enriched membranes reflects a profound rearrangement of photosynthetic structures has been confirmed by analysis of the fluorescence emission spectra of natural and lipid- enriched membranes. Specifically, lipid addition in each of the cases we have studied results in the apparent detachment of chlorophyll- protein complex II from photosynthetic reaction centers. It is concluded that specific arrangements of components in the photosynthetic membrane, necessary for the normal functioning of the membrane in the light reaction of photosynthesis, can be regulated to a large extent by the lipid content of the membrane.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armond P. A., Staehelin L. A., Arntzen C. J. Spatial relationship of photosystem I, photosystem II, and the light-harvesting complex in chloroplast membranes. J Cell Biol. 1977 May;73(2):400–418. doi: 10.1083/jcb.73.2.400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. GOEDHEER J. C. FLUORESCENCE BANDS AND CHLOROPHYLL A FORMS. Biochim Biophys Acta. 1964 Sep 25;88:304–317. doi: 10.1016/0926-6577(64)90186-x. [DOI] [PubMed] [Google Scholar]
  3. McDonnel A., Staehelin L. A. Adhesion between liposomes mediated by the chlorophyll a/b light-harvesting complex isolated from chloroplast membranes. J Cell Biol. 1980 Jan;84(1):40–56. doi: 10.1083/jcb.84.1.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Miller K. R., Cushman R. A. A chloroplast membrane lacking photosystem II. Thylakoid stacking in the absence of the photosystem II particle. Biochim Biophys Acta. 1979 Jun 5;546(3):481–497. doi: 10.1016/0005-2728(79)90083-5. [DOI] [PubMed] [Google Scholar]
  5. Miller K. R., Miller G. J., McIntyre K. R. The light-harvesting chlorpohyll-protein complex of photosystem II. Its location in the photosynthetic membrane. J Cell Biol. 1976 Nov;71(2):624–638. doi: 10.1083/jcb.71.2.624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Murata N. Fluorescence of chlorophyll in photosynthetic systems. IV. Induction of various emissions at low temperatures. Biochim Biophys Acta. 1968 Jul 16;162(1):106–121. doi: 10.1016/0005-2728(68)90219-3. [DOI] [PubMed] [Google Scholar]
  7. Murata N., Nishimura M., Takamiya A. Fluorescence of chlorophyll in photosynthetic systems. 3. Emission and action spectra of fluorescence--three emission bands of chlorophyll a and the energy transfer between two pigment systems. Biochim Biophys Acta. 1966 Oct 10;126(2):234–243. doi: 10.1016/0926-6585(66)90059-8. [DOI] [PubMed] [Google Scholar]
  8. Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. doi: 10.1016/0003-2697(73)90217-0. [DOI] [PubMed] [Google Scholar]
  9. Schneider H., Lemasters J. J., Höchli M., Hackenbrock C. R. Fusion of liposomes with mitochondrial inner membranes. Proc Natl Acad Sci U S A. 1980 Jan;77(1):442–446. doi: 10.1073/pnas.77.1.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Staehelin L. A., Armond P. A., Miller K. R. Chloroplast membrane organization at the supramolecular level and its functional implications. Brookhaven Symp Biol. 1976 Jun 7;(28):278–315. [PubMed] [Google Scholar]
  11. Staehelin L. A. Reversible particle movements associated with unstacking and restacking of chloroplast membranes in vitro. J Cell Biol. 1976 Oct;71(1):136–158. doi: 10.1083/jcb.71.1.136. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES