Abstract
A rapid procedure is described for the isolation of "linker" polypeptides (Lundell, D. J., R. C. Williams, and A. N. Glazer. 1981. J. Biol. Chem. 256:3580-3592) of cyanobacterial phycobilisomes. The 75,000-dalton component of the core of Synechococcus 6301 phycobilisomes isolated by this procedure has been shown to carry a bilin similar in spectroscopic properties to phycocyanobilin. "Renatured" 75,000-dalton polypeptide has absorption maxima at 610 and 665 nm and a fluorescence emission maximum at 676 nm, similar to that of intact phycobilisomes. A complex of allophycocyanin and a 40,000- dalton bilin-carrying fragment of the 75,000-dalton polypeptide, obtained by limited tryptic digestion, is described. This complex, which lacks allophycocyanin B, shows a fluorescence emission maximum at 676 nm. The above data indicate that the 75,000-dalton polypeptide functions as a terminal energy acceptor in the phycobilisome.
Full Text
The Full Text of this article is available as a PDF (478.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Canaani O. D., Gantt E. Circular dichroism and polarized fluorescence characteristics of blue-green algal allophycocyanins. Biochemistry. 1980 Jun 24;19(13):2950–2956. doi: 10.1021/bi00554a021. [DOI] [PubMed] [Google Scholar]
- Cohen-Bazire G., Béguin S., Rimon S., Glazer A. N., Brown D. M. Physico-chemical and immunological properties of allophycocyanins. Arch Microbiol. 1977 Jan 11;111(3):225–238. doi: 10.1007/BF00549359. [DOI] [PubMed] [Google Scholar]
- Gantt E., Lipschultz C. A. Phycobilisomes of Porphyridium cruentum: pigment analysis. Biochemistry. 1974 Jul 2;13(14):2960–2966. doi: 10.1021/bi00711a027. [DOI] [PubMed] [Google Scholar]
- Glazer A. N., Fang S., Brown D. M. Spectroscopic properties of C-phycocyanin and of its alpha and beta subunits. J Biol Chem. 1973 Aug 25;248(16):5679–5685. [PubMed] [Google Scholar]
- Glazer A. N., Hixson C. S. Subunit structure and chromophore composition of rhodophytan phycoerythrins. Porphyridium cruentum B-phycoerythrin and b-phycoerythrin. J Biol Chem. 1977 Jan 10;252(1):32–42. [PubMed] [Google Scholar]
- Glazer A. N. Structure and molecular organization of the photosynthetic accessory pigments of cyanobacteria and red algae. Mol Cell Biochem. 1977 Dec 29;18(2-3):125–140. doi: 10.1007/BF00280278. [DOI] [PubMed] [Google Scholar]
- Glazer A. N., Williams R. C., Yamanaka G., Schachman H. K. Characterization of cyanobacterial phycobilisomes in zwitterionic detergents. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6162–6166. doi: 10.1073/pnas.76.12.6162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lundell D. J., Williams R. C., Glazer A. N. Molecular architecture of a light-harvesting antenna. In vitro assembly of the rod substructures of Synechococcus 6301 phycobilisomes. J Biol Chem. 1981 Apr 10;256(7):3580–3592. [PubMed] [Google Scholar]
- MacColl R., Csatorday K., Berns D. S., Traeger E. Chromophore interactions in allophycocyanin. Biochemistry. 1980 Jun 10;19(12):2817–2820. doi: 10.1021/bi00553a043. [DOI] [PubMed] [Google Scholar]
- Rüdiger W. Gallenfarbstoffe und Biliproteide. Fortschr Chem Org Naturst. 1971;29:60–139. [PubMed] [Google Scholar]
- Troxler R. F., Greenwald L. S., Zilinskas B. A. Allophycocyanin from Nostoc sp. phycobilisomes. Properties and amino acid sequence at the NH2 terminus of the alpha and beta subunits of allophycocyanins I, II, and III. J Biol Chem. 1980 Oct 10;255(19):9380–9387. [PubMed] [Google Scholar]
- Yamanaka G., Glazer A. N., Williams R. C. Cyanobacterial phycobilisomes. Characterization of the phycobilisomes of Synechococcus sp. 6301. J Biol Chem. 1978 Nov 25;253(22):8303–8310. [PubMed] [Google Scholar]
- de Marsac N. T., Cohen-bazire G. Molecular composition of cyanobacterial phycobilisomes. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1635–1639. doi: 10.1073/pnas.74.4.1635. [DOI] [PMC free article] [PubMed] [Google Scholar]