Abstract
Postsynaptic densities and the adjacent cytoskeleton were examined in deep-etched, unfixed slices of guinea pig anteroventral cochlear nucleus. The postsynaptic density seen in conventional thin sections corresponds to a meshwork of 4-nm filaments associated with intramembrane particles at the postsynaptic active zone of inhibitory as well as excitatory synapses. These filaments intermesh with a lattice of 8- to 9-nm microfilaments, tentatively identified as F- actin, that is concentrated under the postsynaptic density. We postulate that the meshwork of 4-nm filaments anchors receptors to the adjacent microfilament lattice; this extended postsynaptic complex may limit the mobility of receptors and help maintain the curvature of the postsynaptic membrane.
Full Text
The Full Text of this article is available as a PDF (924.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bailey C. H., Thompson E. B., Castellucci V. F., Kandel E. R. Ultrastructure of the synapses of sensory neurons that mediate the gill-withdrawal reflex in Aplysia. J Neurocytol. 1979 Aug;8(4):415–444. doi: 10.1007/BF01214801. [DOI] [PubMed] [Google Scholar]
- Bailey C. H., Thompson E. B. Indented synapses in Aplysia. Brain Res. 1979 Sep 7;173(1):13–20. doi: 10.1016/0006-8993(79)91091-6. [DOI] [PubMed] [Google Scholar]
- Banker G., Churchill L., Cotman C. W. Proteins of the postsynaptic density. J Cell Biol. 1974 Nov;63(2 Pt 1):456–465. doi: 10.1083/jcb.63.2.456. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blomberg F., Cohen R. S., Siekevitz P. The structure of postsynaptic densities isolated from dog cerebral cortex. II. Characterization and arrangement of some of the major proteins within the structure. J Cell Biol. 1977 Jul;74(1):204–225. doi: 10.1083/jcb.74.1.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carlin R. K., Grab D. J., Cohen R. S., Siekevitz P. Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities. J Cell Biol. 1980 Sep;86(3):831–845. doi: 10.1083/jcb.86.3.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clarke M., Spudich J. A. Nonmuscle contractile proteins: the role of actin and myosin in cell motility and shape determination. Annu Rev Biochem. 1977;46:797–822. doi: 10.1146/annurev.bi.46.070177.004053. [DOI] [PubMed] [Google Scholar]
- Cohen C. M., Jackson P. L., Branton D. Actin--membrane interactions: association of G-actin with the red cell membrane. J Supramol Struct. 1978;9(1):113–124. doi: 10.1002/jss.400090111. [DOI] [PubMed] [Google Scholar]
- Cohen R. S., Blomberg F., Berzins K., Siekevitz P. The structure of postsynaptic densities isolated from dog cerebral cortex. I. Overall morphology and protein composition. J Cell Biol. 1977 Jul;74(1):181–203. doi: 10.1083/jcb.74.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen R. S., Siekevitz P. Form of the postsynaptic density. A serial section study. J Cell Biol. 1978 Jul;78(1):36–46. doi: 10.1083/jcb.78.1.36. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cotman C. W., Banker G., Churchill L., Taylor D. Isolation of postsynaptic densities from rat brain. J Cell Biol. 1974 Nov;63(2 Pt 1):441–455. doi: 10.1083/jcb.63.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Foster A. C., Mena E. E., Monaghan D. T., Cotman C. W. Synaptic localization of kainic acid binding sites. Nature. 1981 Jan 1;289(5793):73–75. doi: 10.1038/289073a0. [DOI] [PubMed] [Google Scholar]
- Geiger B., Tokuyasu K. T., Dutton A. H., Singer S. J. Vinculin, an intracellular protein localized at specialized sites where microfilament bundles terminate at cell membranes. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4127–4131. doi: 10.1073/pnas.77.7.4127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grab D. J., Berzins K., Cohen R. S., Siekevitz P. Presence of calmodulin in postsynaptic densities isolated from canine cerebral cortex. J Biol Chem. 1979 Sep 10;254(17):8690–8696. [PubMed] [Google Scholar]
- Gulley R. L. Changes in the presynaptic membrane of the synapses of the anteroventral cochlear nucleus with different levels of acoustic stimulation. Brain Res. 1978 May 12;146(2):373–379. doi: 10.1016/0006-8993(78)90982-4. [DOI] [PubMed] [Google Scholar]
- Gulley R. L., Landis D. M., Reese T. S. Internal organization of membranes at end bulbs of Held in the anteroventral cochlear nucleus. J Comp Neurol. 1978 Aug 15;180(4):707–741. doi: 10.1002/cne.901800405. [DOI] [PubMed] [Google Scholar]
- Gulley R. L., Wenthold R. J., Neises G. R. Remodeling of neuronal membranes as an early response to deafferentation. A freeze-fracture study. J Cell Biol. 1977 Dec;75(3):837–850. doi: 10.1083/jcb.75.3.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gurd J. W. Identification of lectin receptors associated with rat brain postsynaptic densities. Brain Res. 1977 Apr 22;126(1):154–159. doi: 10.1016/0006-8993(77)90222-0. [DOI] [PubMed] [Google Scholar]
- Heuser J. E., Kirschner M. W. Filament organization revealed in platinum replicas of freeze-dried cytoskeletons. J Cell Biol. 1980 Jul;86(1):212–234. doi: 10.1083/jcb.86.1.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heuser J. E., Reese T. S., Landis D. M. Preservation of synaptic structure by rapid freezing. Cold Spring Harb Symp Quant Biol. 1976;40:17–24. doi: 10.1101/sqb.1976.040.01.004. [DOI] [PubMed] [Google Scholar]
- Heuser J. E., Salpeter S. R. Organization of acetylcholine receptors in quick-frozen, deep-etched, and rotary-replicated Torpedo postsynaptic membrane. J Cell Biol. 1979 Jul;82(1):150–173. doi: 10.1083/jcb.82.1.150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelly P. T., Cotman C. W. Synaptic proteins. Characterization of tubulin and actin and identification of a distinct postsynaptic density polypeptide. J Cell Biol. 1978 Oct;79(1):173–183. doi: 10.1083/jcb.79.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelly P., Cotman C. W., Gentry C., Nicolson G. L. Distribution and mobility of lectin receptors on synaptic membranes of identified neurons in the central nervous system. J Cell Biol. 1976 Nov;71(2):487–496. doi: 10.1083/jcb.71.2.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landis D. M., Reese T. S., Raviola E. Differences in membrane structure between excitatory and inhibitory components of the reciprocal synapse in the olfactory bulb. J Comp Neurol. 1974 May 1;155(1):67–91. doi: 10.1002/cne.901550106. [DOI] [PubMed] [Google Scholar]
- Landis D. M., Reese T. S. Structure of the Purkinje cell membrane in staggerer and weaver mutant mice. J Comp Neurol. 1977 Jan 15;171(2):247–260. doi: 10.1002/cne.901710208. [DOI] [PubMed] [Google Scholar]
- Lazarides E., Burridge K. Alpha-actinin: immunofluorescent localization of a muscle structural protein in nonmuscle cells. Cell. 1975 Nov;6(3):289–298. doi: 10.1016/0092-8674(75)90180-4. [DOI] [PubMed] [Google Scholar]
- Matus A. I., Taff-Jones D. H. Morphology and molecular composition of isolated postsynaptic junctional structures. Proc R Soc Lond B Biol Sci. 1978 Dec 4;203(1151):135–151. doi: 10.1098/rspb.1978.0097. [DOI] [PubMed] [Google Scholar]
- Matus A. I., Walters B. B. Ultrastructure of the synaptic junctional lattice isolated from mammalian brain. J Neurocytol. 1975 Jun;4(3):369–375. doi: 10.1007/BF01102119. [DOI] [PubMed] [Google Scholar]
- Matus A., Pehling G., Ackermann M., Maeder J. Brain postsynaptic densities: the relationship to glial and neuronal filaments. J Cell Biol. 1980 Nov;87(2 Pt 1):346–359. doi: 10.1083/jcb.87.2.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matus A., Pehling G., Wilkinson D. gamma-Aminobutyric acid receptors in brain postsynaptic densities. J Neurobiol. 1981 Jan;12(1):67–73. doi: 10.1002/neu.480120106. [DOI] [PubMed] [Google Scholar]
- Nicolson G. L. Transmembrane control of the receptors on normal and tumor cells. I. Cytoplasmic influence over surface components. Biochim Biophys Acta. 1976 Apr 13;457(1):57–108. doi: 10.1016/0304-4157(76)90014-9. [DOI] [PubMed] [Google Scholar]
- PALAY S. L. The morphology of synapses in the central nervous system. Exp Cell Res. 1958;14(Suppl 5):275–293. [PubMed] [Google Scholar]
- Schwartz A. M., Gulley R. L. Non-primary afferents to the principal cells of the rostral anteroventral cochlear nucleus of the guinea pig. Am J Anat. 1978 Dec;153(4):489–508. doi: 10.1002/aja.1001530402. [DOI] [PubMed] [Google Scholar]
- Streit P., Akert K., Sandri C., Livingston R. B., Moor H. Dynamic ultrastructure of presynaptic membranes at nerve terminals in the spinal cord of rats. Anesthetized and unanesthetized preparations compared. Brain Res. 1972 Dec 24;48:11–26. doi: 10.1016/0006-8993(72)90168-0. [DOI] [PubMed] [Google Scholar]
- Ueda T., Greengard P., Berzins K., Cohen R. S., Blomberg F., Grab D. J., Siekevitz P. Subcellular distribution in cerebral cortex of two proteins phosphorylated by a cAMP-dependent protein kinase. J Cell Biol. 1979 Nov;83(2 Pt 1):308–319. doi: 10.1083/jcb.83.2.308. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu J., Branton D. Reconstitution of intramembrane particles in recombinants of erythrocyte protein band 3 and lipid: effects of spectrin-actin association. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3891–3895. doi: 10.1073/pnas.73.11.3891. [DOI] [PMC free article] [PubMed] [Google Scholar]