Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Oct 1;91(1):126–134. doi: 10.1083/jcb.91.1.126

Thylakoid membrane biogenesis in Chlamydomonas reinhardtii 137+: cell cycle variations in the synthesis and assembly of polar glycerolipid

PMCID: PMC2111926  PMID: 7298713

Abstract

The synthesis and assembly of thylakoid membrane polar glycerolipid (glycolipid, phospholipid, and ether lipid) have been monitored in synchronous cultures of the green alga Chlamydomonas reinhardtii 137+. A "pulse" protocol using radioactive acetate as the lipogenic precursor was devised to allow assessment of both processes during the 24-h (12-h light/12-h dark) vegetative cell cycle. Under these conditions, acetate incorporation into each chromatographically resolved lipid at the cellular level reliably reflects lipid synthesis, and the appearance of radiolabeled lipid in purified photosynthetic membrane is indicative of the lipid assembly attendant to thylakoid biogenesis. Our results demonstrate that polar glycerolipid is synthesized by the alga and is assembled into its thylakoid membrane continuously, but differentially, with respect to cell cycle time. Synthesis and assembly are most rapid during the photoperiod (mid-to-late G1), reach maximum rates at mid- photoperiod, and are comparatively negligible in the dark (S, M, and early-to-mid G1). The extent to which synthesis and assembly vary within this general kinetic pattern, though, is characteristic of each thylakoid lipid, suggesting that the processes take place in a multistep manner with some temporal coordination among the different lipid types. Parallelism between the cyclic patterns of polar lipid synthesis at the cellular level and of polar lipid assembly into photosynthetic membrane at the subcellular level indicates that lipid production is not only essential to continuing thylakoid biogenesis but is also the critical determinant of the kinetics of thylakoid lipid assembly.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. M., McCarty R. E. Rapid and sensitive assay for free fatty acids using rhodamine 6G. Anal Biochem. 1972 Jan;45(1):260–270. doi: 10.1016/0003-2697(72)90026-7. [DOI] [PubMed] [Google Scholar]
  2. BROCKERHOFF H. BREAKDOWN OF PHOSPHOLIPIDS IN MILD ALKALINE HYDROLYSIS. J Lipid Res. 1963 Jan;4:96–99. [PubMed] [Google Scholar]
  3. Beck D. P., Levine R. P. Synthesis of chloroplast membrane polypeptides during synchronous growth of Chlamydomonas reinhardtii. J Cell Biol. 1974 Dec;63(3):759–772. doi: 10.1083/jcb.63.3.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beck J. C., Levine R. P. Synthesis of chloroplast membrane lipids and chlorophyll in synchronous cultures of Chlamydomonas reinhardi. Biochim Biophys Acta. 1977 Dec 21;489(3):360–369. doi: 10.1016/0005-2760(77)90156-4. [DOI] [PubMed] [Google Scholar]
  5. Bourguignon L. Y., Palade G. E. Incorporation of polypeptides into thylakoid membranes of Chlamydomonas reinhardtii. Cyclic variations. J Cell Biol. 1976 May;69(2):327–344. doi: 10.1083/jcb.69.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chatterjee S., Sweeley C. C., Velicer L. F. Glycosphingolipids of human KB cells grown in monolayer, suspension, and synchronized cultures. J Biol Chem. 1975 Jan 10;250(1):61–66. [PubMed] [Google Scholar]
  7. Chiang K. S., Sueoka N. Replication of chloroplast DNA in Chlamydomonas reinhardi during vegetative cell cycle: its mode and regulation. Proc Natl Acad Sci U S A. 1967 May;57(5):1506–1513. doi: 10.1073/pnas.57.5.1506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chua N. H., Bennoun P. Thylakoid membrane polypeptides of Chlamydomonas reinhardtii: wild-type and mutant strains deficient in photosystem II reaction center. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2175–2179. doi: 10.1073/pnas.72.6.2175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chua N. H., Blobel G., Siekevitz P., Palade G. E. Periodic variations in the ratio of free to thylakoid-bound chloroplast ribosomes during the cell cycle of Chlamydomonas reinhardtii. J Cell Biol. 1976 Nov;71(2):497–514. doi: 10.1083/jcb.71.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cornell R. B., Horwitz A. F. Apparent coordination of the biosynthesis of lipids in cultured cells: its relationship to the regulation of the membrane sterol:phospholipid ratio and cell cycling. J Cell Biol. 1980 Sep;86(3):810–819. doi: 10.1083/jcb.86.3.810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cronan J. E., Jr Molecular biology of bacterial membrane lipids. Annu Rev Biochem. 1978;47:163–189. doi: 10.1146/annurev.bi.47.070178.001115. [DOI] [PubMed] [Google Scholar]
  12. De Petrocellis B., Siekevitz P., Palade G. E. Changes in chemical composition of thylakoid membranes during greening of the y-1 mutant of Chlamydomonas reinhardi. J Cell Biol. 1970 Mar;44(3):618–634. doi: 10.1083/jcb.44.3.618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goldberg I., Ohad I. Biogenesis of chloroplast membranes. IV. Lipid and pigment changes during synthesis of chloroplast membranes in a mutant of Chlamydomonas reinhardi y-1. J Cell Biol. 1970 Mar;44(3):563–571. doi: 10.1083/jcb.44.3.563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harwood J. L. The synthesis of acyl lipids in plant tissues. Prog Lipid Res. 1979;18(2):55–86. doi: 10.1016/0163-7827(79)90006-7. [DOI] [PubMed] [Google Scholar]
  15. Holleman J. M., Key J. L. Inactive and protein precursor pools of amino acids in the soybean hypocotyl. Plant Physiol. 1967 Jan;42(1):29–36. doi: 10.1104/pp.42.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Howell S. H., Posakony J. W., Hill K. R. The cell cycle program of polypeptide labeling in Chlamydomonas reinhardtii. J Cell Biol. 1977 Feb;72(2):223–241. doi: 10.1083/jcb.72.2.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Iwanij V., Chua N. H., Siekevitz P. Synthesis and turnover of ribulose biphosphate carboxylase and of its subunits during the cell cycle of Chlamydomonas reinhardtii. J Cell Biol. 1975 Mar;64(3):572–585. doi: 10.1083/jcb.64.3.572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Joyard J., Douce R., Siebertz H. P., Heinz E. Distribution of radioactive lipids between envelopes and thylakoids from chloroplasts labelled in vivo. Eur J Biochem. 1980;108(1):171–176. doi: 10.1111/j.1432-1033.1980.tb04709.x. [DOI] [PubMed] [Google Scholar]
  19. Jungas R. L. Fatty acid synthesis in adipose tissue incubated in tritiated water. Biochemistry. 1968 Oct;7(10):3708–3717. doi: 10.1021/bi00850a050. [DOI] [PubMed] [Google Scholar]
  20. Kates J. R., Chiang K. S., Jones R. F. Studies on DNA replication during synchronized vegetative growth and gametic differentiation in Chlamydomonas reinhardtii. Exp Cell Res. 1968 Jan;49(1):121–135. doi: 10.1016/0014-4827(68)90525-9. [DOI] [PubMed] [Google Scholar]
  21. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  22. Marshall M. O., Kates M. Biosynthesis of phosphatidylglycerol by cell-free preparations from spinach leaves. Biochim Biophys Acta. 1972 Apr 18;260(4):558–570. doi: 10.1016/0005-2760(72)90005-7. [DOI] [PubMed] [Google Scholar]
  23. McCarty R. E., Jagendorf A. T. Chloroplast damage due to enzymatic hydrolysis of endogenous lipids. Plant Physiol. 1965 Jul;40(4):725–735. doi: 10.1104/pp.40.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Neame K. D. Sources of error in the channels ratio method for efficiency determination in liquid scintillation counting. Anal Biochem. 1978 Nov;91(1):323–339. doi: 10.1016/0003-2697(78)90846-1. [DOI] [PubMed] [Google Scholar]
  25. Ohad I., Siekevitz P., Palade G. E. Biogenesis of chloroplast membranes. I. Plastid dedifferentiation in a dark-grown algal mutant (Chlamydomonas reinhardi). J Cell Biol. 1967 Dec;35(3):521–552. doi: 10.1083/jcb.35.3.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Quinn P. J., Williams W. P. Plant lipids and their role in membrane function. Prog Biophys Mol Biol. 1978;34(2):109–173. doi: 10.1016/0079-6107(79)90016-6. [DOI] [PubMed] [Google Scholar]
  27. SAGER R., GRANICK S. Nutritional studies with Chlamydomonas reinhardi. Ann N Y Acad Sci. 1953 Oct 14;56(5):831–838. doi: 10.1111/j.1749-6632.1953.tb30261.x. [DOI] [PubMed] [Google Scholar]
  28. Schötz F., Bathelt H., Arnold C. G., Schimmer O. Die Architektur und Organisation der Chlamydomonas-Zelle. Ergebnisse der Elektronenmikroskopie von Serienschnitten und der daraus resultierenden dreidimensionalen Rekonstruktion. Protoplasma. 1972;75(3):229–254. doi: 10.1007/BF01279818. [DOI] [PubMed] [Google Scholar]
  29. Sirevåg R., Levine R. P. Fatty acid synthetase from Chlamydomonas reinhardi. J Biol Chem. 1972 Apr 25;247(8):2586–2591. [PubMed] [Google Scholar]
  30. Spudich J. L., Sager R. Regulation of the Chlamydomonas cell cycle by light and dark. J Cell Biol. 1980 Apr;85(1):136–145. doi: 10.1083/jcb.85.1.136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sueoka N., Chiang K. S., Kates J. R. Deoxyribonucleic acid replication in meiosis of Chlamydomonas reinhardi. I. Isotopic transfer experiments with a strain producing eight zoospores. J Mol Biol. 1967 Apr 14;25(1):47–66. doi: 10.1016/0022-2836(67)90278-1. [DOI] [PubMed] [Google Scholar]
  32. Tanaka T., Ohnishi J., Yamada M. The occurrence of phosphatidyl choline exchange protein in leaves. Biochem Biophys Res Commun. 1980 Sep 16;96(1):394–399. doi: 10.1016/0006-291x(80)91228-0. [DOI] [PubMed] [Google Scholar]
  33. Van Besouw A., Wintermans J. F., Bögemann G. Galactolipid formation in chloroplast envelopes. III. Some observations on galactose incorporation by envelopes with high and low content of diacylglycerol. Biochim Biophys Acta. 1981 Jan 26;663(1):108–120. doi: 10.1016/0005-2760(81)90198-3. [DOI] [PubMed] [Google Scholar]
  34. Warren L. The biological significance of turnover of the surface membrane of animal cells. Curr Top Dev Biol. 1969;4:197–222. doi: 10.1016/s0070-2153(08)60485-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES