Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Oct 1;91(1):247–256. doi: 10.1083/jcb.91.1.247

cis-Unsaturated fatty acids induce the fusion of chromaffin granules aggregated by synexin

PMCID: PMC2111937  PMID: 6457840

Abstract

When isolated chromaffin granules were aggregated by synexin (a Ca2+- binding protein present in chromaffin and other secretory tissues) and then exposed to cis-unsaturated fatty acids at 37 degrees C, they fused together to form large vesicles. The fusion was monitored by phase and electron microscopy and by turbidity measurements on the granule suspension. Arachidonic acid was the most effective fusogen, whereas trans-unsaturated fatty acids, saturated fatty acids, detergents or lysolecithin were inactive. During fusion some of the epinephrine of the granules was released but the soluble core proteins remained trapped in the resulting vesicles. These vesicles swelled to enclose the maximum volume. Although this swelling could be inhibited by increasing the osmotic strength of the medium, it did not appear to depend on the chemiosmotic properties of the granule membranes as it was not influenced by ATP, a proton ionophore, or an anion transport inhibitor. The regulators of this in vitro fusion--Ca2+, synexin, and free, cis-unsaturated fatty acids--may be present in the cytoplasm of the chromaffin cell when it is stimulated to release epinephrine and granule proteins by exocytosis. Therefore, this fusion event may be the same that occurs between chromaffin granules undergoing compound exocytosis.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANTON A. H., SAYRE D. F. A study of the factors affecting the aluminum oxide-trihydroxyindole procedure for the analysis of catecholamines. J Pharmacol Exp Ther. 1962 Dec;138:360–375. [PubMed] [Google Scholar]
  2. Ahkong Q. F., Fisher D., Tampion W., Lucy J. A. The fusion of erythrocytes by fatty acids, esters, retinol and alpha-tocopherol. Biochem J. 1973 Sep;136(1):147–155. doi: 10.1042/bj1360147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Billah M. M., Lapetina E. G., Cuatrecasas P. Phospholipase A2 and phospholipase C activities of platelets. Differential substrate specificity, Ca2+ requirement, pH dependence, and cellular localization. J Biol Chem. 1980 Nov 10;255(21):10227–10231. [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Brown E. M., Pazoles C. J., Creutz C. E., Aurbach G. D., Pollard H. B. Role of anions in parathyroid hormone release from dispersed bovine parathyroid cells. Proc Natl Acad Sci U S A. 1978 Feb;75(2):876–880. doi: 10.1073/pnas.75.2.876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Casey R. P., Njus D., Radda G. K., Sehr P. A. Adenosine triphosphate-evoked catecholamine release in chromatin granules. Osmotic lysis as a consequence of proton translocation. Biochem J. 1976 Sep 15;158(3):583–588. doi: 10.1042/bj1580583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Creutz C. E., Pazoles C. J., Pollard H. B. Identification and purification of an adrenal medullary protein (synexin) that causes calcium-dependent aggregation of isolated chromaffin granules. J Biol Chem. 1978 Apr 25;253(8):2858–2866. [PubMed] [Google Scholar]
  8. Creutz C. E., Pazoles C. J., Pollard H. B. Self-association of synexin in the presence of calcium. Correlation with synexin-induced membrane fusion and examination of the structure of synexin aggregates. J Biol Chem. 1979 Jan 25;254(2):553–558. [PubMed] [Google Scholar]
  9. Creutz C. E., Pollard H. B. A biophysical model of the chromaffin granule. Accurate description of the kinetics of ATP and Cl- dependent granule lysis. Biophys J. 1980 Aug;31(2):255–270. doi: 10.1016/S0006-3495(80)85055-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Crews F. T., Morita Y., Hirata F., Axelrod J., Siraganian R. P. Phospholipid methylation affects immunoglobulin E-mediated histamine and arachidonic acid release in rat leukemia basophils. Biochem Biophys Res Commun. 1980 Mar 13;93(1):42–49. doi: 10.1016/s0006-291x(80)80243-9. [DOI] [PubMed] [Google Scholar]
  11. DE ROBERTIS E., VAZ FERREIRA A. Electron microscope study of the excretion of cathecol-containing droplets in the adrenal medulla. Exp Cell Res. 1957 Jun;12(3):568–574. doi: 10.1016/0014-4827(57)90172-6. [DOI] [PubMed] [Google Scholar]
  12. DOUGLAS W. W., RUBIN R. P. The role of calcium in the secretory response of the adrenal medulla to acetylcholine. J Physiol. 1961 Nov;159:40–57. doi: 10.1113/jphysiol.1961.sp006791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dabrow M., Zaremba S., Hogue-Angeletti R. A. Specificity of synexin-induced chromaffin granule aggregation. Biochem Biophys Res Commun. 1980 Oct 16;96(3):1164–1171. doi: 10.1016/0006-291x(80)90074-1. [DOI] [PubMed] [Google Scholar]
  14. Diplock A. T., Lucy J. A. The biochemical modes of action of vitamin e and selenium: A hypothesis. FEBS Lett. 1973 Feb 1;29(3):205–210. doi: 10.1016/0014-5793(73)80020-1. [DOI] [PubMed] [Google Scholar]
  15. HILLARP N. A. Further observations on the state of the catechol amines stored in the adrenal medullary granules. Acta Physiol Scand. 1959 Nov 15;47:271–279. doi: 10.1111/j.1748-1716.1960.tb00078.x. [DOI] [PubMed] [Google Scholar]
  16. Kirshner N., Sage H. J., Smith W. J., Kirshner A. G. Release of catecholamines and specific protein from adrenal glands. Science. 1966 Oct 28;154(3748):529–531. doi: 10.1126/science.154.3748.529. [DOI] [PubMed] [Google Scholar]
  17. Klausner R. D., Kleinfeld A. M., Hoover R. L., Karnovsky M. J. Lipid domains in membranes. Evidence derived from structural perturbations induced by free fatty acids and lifetime heterogeneity analysis. J Biol Chem. 1980 Feb 25;255(4):1286–1295. [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Marcus A. J. The role of lipids in platelet function: with particular reference to the arachidonic acid pathway. J Lipid Res. 1978 Sep;19(7):793–826. [PubMed] [Google Scholar]
  20. Morris S. J., Hughes J. M. Synexin protein is non-selective in its ability to increase Ca2+-dependent aggregation of biological and artificial membranes. Biochem Biophys Res Commun. 1979 Nov 14;91(1):345–350. doi: 10.1016/0006-291x(79)90624-7. [DOI] [PubMed] [Google Scholar]
  21. Palade G. Intracellular aspects of the process of protein synthesis. Science. 1975 Aug 1;189(4200):347–358. doi: 10.1126/science.1096303. [DOI] [PubMed] [Google Scholar]
  22. Pazoles C. J., Pollard H. B. Evidence for stimulation of anion transport in ATP-evoked transmitter release from isolated secretory vesicles. J Biol Chem. 1978 Jun 10;253(11):3962–3969. [PubMed] [Google Scholar]
  23. Pollard H. B., Menard R., Brandt H. A., Pazoles C. J., Creutz C. E., Ramu A. Application of Bradford's protein assay to adrenal gland subcellular fractions. Anal Biochem. 1978 Jun 1;86(2):761–763. doi: 10.1016/0003-2697(78)90805-9. [DOI] [PubMed] [Google Scholar]
  24. Pollard H. B., Pazoles C. J., Creutz C. E. Mechanism of calcium action and release of vesicle-bound hormones during exocytosis. Recent Prog Horm Res. 1981;37:299–332. doi: 10.1016/b978-0-12-571137-1.50010-4. [DOI] [PubMed] [Google Scholar]
  25. Pollard H. B., Shindo H., Creutz C. E., Pazoles C. J., Cohen J. S. Internal pH and state of ATP in adrenergic chromaffin granules determined by 31P nuclear magnetic resonance spectroscopy. J Biol Chem. 1979 Feb 25;254(4):1170–1177. [PubMed] [Google Scholar]
  26. Pollard H. B., Tack-Goldman K., Pazoles C. J., Creutz C. E., Shulman N. R. Evidence for control of serotonin secretion from human platelets by hydroxyl ion transport and osmotic lysis. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5295–5299. doi: 10.1073/pnas.74.12.5295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Winkler H., Smith A. D. Lipids of adrenal chromaffin granules: fatty acids composition of phospholipids, in particular lysolecithin. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1968;261(4):379–388. doi: 10.1007/BF00537182. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES