Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Oct 1;91(1):232–239. doi: 10.1083/jcb.91.1.232

Stimulation of tubulin tyrosinolation in rabbit leukocytes evoked by the chemoattractant formyl-methionyl-leucyl-phenylalanine

PMCID: PMC2111946  PMID: 6117560

Abstract

Cellular tubulin is subject to a posttranslational modification involving the reversible addition to tyrosine through peptide linkage to the C-terminal glutamate of the alpha-chain. The synthetic peptide chemoattractant, N-formyl-methionyl-leucyl-phenylalanine, causes a specific, dose-dependent stimulation of tubulin tyrosinolation in rabbit leukocytes. This stimulation is prevented by carbobenzoxy- phenylalanyl-methionine, benzoyl-tyrosine ethylester, and nordihydroguaiaretic acid, which are all inhibitors of chemotaxis presumed to act via membrane-associated events. The combination of 3- deazaadenosine and homocysteine thiolactone, which inhibits phospholipid methylation, and quinacrine, an inhibitor of phospholipase A2, also abolishes the response to the peptide. Colchicine, however, which causes a marked disassembly of cellular microtubules in these cells and also inhibits chemotaxis, does not have any inhibitory effect on the basal or peptide-stimulated rate of tubulin tyrosinolation. In contrast, taxol, a microtubule-stabilizing agent, has an inhibitory effect on both the basal and peptide-stimulated tyrosine incorporation. Taxol also inhibits chemotaxis in rabbit leukocytes. The results strongly suggest the role of closely linked membrane-cytoskeleton interactions in leukocyte chemotaxis, in which tyrosinolation of tubulin may be functionally involved.

Full Text

The Full Text of this article is available as a PDF (824.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler J. Chemotaxis in bacteria. Annu Rev Biochem. 1975;44:341–356. doi: 10.1146/annurev.bi.44.070175.002013. [DOI] [PubMed] [Google Scholar]
  2. Altman L. C., Kirchner H. The production of a monocyte chemotactic factor by agammaglobulinemic chicken spleen cells. J Immunol. 1972 Nov;109(5):1149–1151. [PubMed] [Google Scholar]
  3. Aswanikumar S., Corcoran B., Schiffmann E., Day A. R., Freer R. J., Showell H. J., Becker E. L. Demonstration of a receptor on rabbit neutrophils for chemotactic peptides. Biochem Biophys Res Commun. 1977 Jan 24;74(2):810–817. doi: 10.1016/0006-291x(77)90375-8. [DOI] [PubMed] [Google Scholar]
  4. Aswanikumar S., Schiffmann E., Corcoran B. A., Wahl S. M. Role of a peptidase in phagocyte chemotaxis. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2439–2442. doi: 10.1073/pnas.73.7.2439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barra H. S., Arce C. A., Rodríguez J. A., Caputto R. Some common properties of the protein that incorporates tyrosine as a single unit and the microtubule proteins. Biochem Biophys Res Commun. 1974 Oct 23;60(4):1384–1390. doi: 10.1016/0006-291x(74)90351-9. [DOI] [PubMed] [Google Scholar]
  6. Bonner J. T., Barkley D. S., Hall E. M., Konijn T. M., Mason J. W., O'Keefe G., 3rd, Wolfe P. B. Acrasin, Acrasinase, and the sensitivity to acrasin in Dictyostelium discoideum. Dev Biol. 1969 Jul;20(1):72–87. doi: 10.1016/0012-1606(69)90005-0. [DOI] [PubMed] [Google Scholar]
  7. Bulinski J. C., Rodríguez J. A., Borisy G. G. Test of four possible mechanisms for the temporal control of spindle and cytoplasmic microtubule assembly in HeLa cells. J Biol Chem. 1980 Feb 25;255(4):1684–1688. [PubMed] [Google Scholar]
  8. Caner J. E. Colchicine inhibition of chemotaxis. Arthritis Rheum. 1965 Oct;8(5):757–764. doi: 10.1002/art.1780080438. [DOI] [PubMed] [Google Scholar]
  9. Eipper B. A. Properties of rat brain tubulin. J Biol Chem. 1974 Mar 10;249(5):1407–1416. [PubMed] [Google Scholar]
  10. Feit H., Barondes S. H. Colchicine-binding activity in particulate fractions of mouse brain. J Neurochem. 1970 Sep;17(9):1355–1364. doi: 10.1111/j.1471-4159.1970.tb06870.x. [DOI] [PubMed] [Google Scholar]
  11. Gallin J. I., Rosenthal A. S. The regulatory role of divalent cations in human granulocyte chemotaxis. Evidence for an association between calcium exchanges and microtubule assembly. J Cell Biol. 1974 Sep;62(3):594–609. doi: 10.1083/jcb.62.3.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goldstein I., Hoffstein S., Gallin J., Weissmann G. Mechanisms of lysosomal enzyme release from human leukocytes: microtubule assembly and membrane fusion induced by a component of complement. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2916–2920. doi: 10.1073/pnas.70.10.2916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hazelbauer G. L., Adler J. Role of the galactose binding protein in chemotaxis of Escherichia coli toward galactose. Nat New Biol. 1971 Mar 24;230(12):101–104. doi: 10.1038/newbio230101a0. [DOI] [PubMed] [Google Scholar]
  14. Hirata F., Corcoran B. A., Venkatasubramanian K., Schiffmann E., Axelrod J. Chemoattractants stimulate degradation of methylated phospholipids and release of arachidonic acid in rabbit leukocytes. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2640–2643. doi: 10.1073/pnas.76.6.2640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hoffstein S., Goldstein I. M., Weissmann G. Role of microtubule assembly in lysosomal enzyme secretion from human polymorphonuclear leukocytes. A reevaluation. J Cell Biol. 1977 Apr;73(1):242–256. doi: 10.1083/jcb.73.1.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Konijn T. M., Van De Meene J. G., Bonner J. T., Barkley D. S. The acrasin activity of adenosine-3',5'-cyclic phosphate. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1152–1154. doi: 10.1073/pnas.58.3.1152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
  19. Malchow D., Gerisch G. Short-term binding and hydrolysis of cyclic 3':5'-adenosine monophosphate by aggregating Dictyostelium cells. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2423–2427. doi: 10.1073/pnas.71.6.2423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Malech H. L., Root R. K., Gallin J. I. Structural analysis of human neutrophil migration. Centriole, microtubule, and microfilament orientation and function during chemotaxis. J Cell Biol. 1977 Dec;75(3):666–693. doi: 10.1083/jcb.75.3.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Naccache P. H., Showell H. J., Becker E. L., Sha'afi R. I. Pharmacological differentiation between the chemotactic factor induced intracellular calcium redistribution and transmembrane calcium influx in rabbit neutrophils. Biochem Biophys Res Commun. 1979 Aug 28;89(4):1224–1230. doi: 10.1016/0006-291x(79)92139-9. [DOI] [PubMed] [Google Scholar]
  22. Nath J., Flavin M. An apparent paradox in the occurrence, and the in vivo turnover, of C-terminal tyrosine in membrane-bound tubulin of brain. J Neurochem. 1980 Sep;35(3):693–706. doi: 10.1111/j.1471-4159.1980.tb03708.x. [DOI] [PubMed] [Google Scholar]
  23. Nath J., Flavin M. Tubulin tyrosylation in vivo and changes accompanying differentiation of cultured neuroblastoma-glioma hybrid cells. J Biol Chem. 1979 Nov 25;254(22):11505–11510. [PubMed] [Google Scholar]
  24. O'Dea R. F., Viveros O. H., Axelrod J., Aswanikaumar S., Schiffmann E., Corcoran B. A. Raipid stimulation of protein carboxymethylation in leukocytes by a chemotatic peptide. Nature. 1978 Mar 30;272(5652):462–464. doi: 10.1038/272462a0. [DOI] [PubMed] [Google Scholar]
  25. Oliver J. M. Cell biology of leukocyte abnormalities--membrane and cytoskeletal function in normal and defective cells. A review. Am J Pathol. 1978 Oct;93(1):221–270. [PMC free article] [PubMed] [Google Scholar]
  26. Phelps P. Polymorphonuclear leukocyte motility in vitro. IV. Colchicine inhibition of chemotactic activity formation after phagocytosis of urate crystals. Arthritis Rheum. 1970 Jan-Feb;13(1):1–9. doi: 10.1002/art.1780130101. [DOI] [PubMed] [Google Scholar]
  27. Postlethwaite A. E., Seyer J. M., Kang A. H. Chemotactic attraction of human fibroblasts to type I, II, and III collagens and collagen-derived peptides. Proc Natl Acad Sci U S A. 1978 Feb;75(2):871–875. doi: 10.1073/pnas.75.2.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Preston S. F., Deanin G. G., Hanson R. K., Gordon M. W. The phylogenetic distribution of tubulin:tyrosine ligase. J Mol Evol. 1979 Oct;13(3):233–244. doi: 10.1007/BF01739482. [DOI] [PubMed] [Google Scholar]
  29. Ramsey W. S., Harris A. Leucocyte locomotion and its inhibition by antimitotic drugs. Exp Cell Res. 1973 Dec;82(2):262–270. doi: 10.1016/0014-4827(73)90340-6. [DOI] [PubMed] [Google Scholar]
  30. Raybin D., Flavin M. An enzyme tyrosylating alpha-tubulin and its role in microtubule assembly. Biochem Biophys Res Commun. 1975 Aug 4;65(3):1088–1095. doi: 10.1016/s0006-291x(75)80497-9. [DOI] [PubMed] [Google Scholar]
  31. Raybin D., Flavin M. Enzyme which specifically adds tyrosine to the alpha chain of tubulin. Biochemistry. 1977 May 17;16(10):2189–2194. doi: 10.1021/bi00629a023. [DOI] [PubMed] [Google Scholar]
  32. Raybin D., Flavin M. Modification of tubulin by tyrosylation in cells and extracts and its effect on assembly in vitro. J Cell Biol. 1977 May;73(2):492–504. doi: 10.1083/jcb.73.2.492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Roisen F. J., Murphy R. A. Neurite development in vitro. II. The role of microfilaments and microtubules in dibutyryl adenosine 3',5'-cyclic monophosphate and nerve growth factor stimulated maturation. J Neurobiol. 1973;4(5):397–412. doi: 10.1002/neu.480040502. [DOI] [PubMed] [Google Scholar]
  34. Romualdez A. G., Jr, Ward P. A. A unique complement derived chemotactic factor for tumor cells. Proc Natl Acad Sci U S A. 1975 Oct;72(10):4128–4132. doi: 10.1073/pnas.72.10.4128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schiff P. B., Horwitz S. B. Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1561–1565. doi: 10.1073/pnas.77.3.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schiffmann E., Gallin J. I. Biochemistry of phagocyte chemotaxis. Curr Top Cell Regul. 1979;15:203–261. doi: 10.1016/b978-0-12-152815-7.50010-7. [DOI] [PubMed] [Google Scholar]
  37. Showell H. J., Freer R. J., Zigmond S. H., Schiffmann E., Aswanikumar S., Corcoran B., Becker E. L. The structure-activity relations of synthetic peptides as chemotactic factors and inducers of lysosomal secretion for neutrophils. J Exp Med. 1976 May 1;143(5):1154–1169. doi: 10.1084/jem.143.5.1154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Snyderman R., Phillips J., Mergenhagen S. E. Polymorphonuclear leukocyte chemotactic activity in rabbit serum and Guinea pig serum treated with immune complexes: evidence for c5a as the major chemotactic factor. Infect Immun. 1970 Jun;1(6):521–525. doi: 10.1128/iai.1.6.521-525.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Thompson W. C., Deanin G. G., Gordon M. W. Intact microtubules are required for rapid turnover of carboxyl-terminal tyrosine of alpha-tubulin in cell cultures. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1318–1322. doi: 10.1073/pnas.76.3.1318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Ward P. A., Newman L. J. A neutrophil chemotactic factor from human C'5. J Immunol. 1969 Jan;102(1):93–99. [PubMed] [Google Scholar]
  41. Wilkinson P. C. Recognition of protein structure in leukocyte chemotaxis. Nature. 1973 Aug 24;244(5417):512–513. doi: 10.1038/244512a0. [DOI] [PubMed] [Google Scholar]
  42. Williams L. T., Snyderman R., Pike M. C., Lefkowitz R. J. Specific receptor sites for chemotactic peptides on human polymorphonuclear leukocytes. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1204–1208. doi: 10.1073/pnas.74.3.1204. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES