Abstract
Serotonin neurons in 14-d embryonic rat brain stem were identified by peroxidase-antiperoxidase immunocytochemistry with an affinity-purified antiserotonin antibody. Brain-stem tissue was dissected from 14- or 15- d embryonic rats, dissociated and grown in cell culture for up to 5 wk, and serotonin neurons were identified by immunocytochemistry. Within 24 h of plating, serotonin immunoreactivity was present in 3.3% of neurons. Immunoreactivity in neuronal cell bodies decreased with time, whereas staining of processes increased. The number of serotonin- immunoreactive neurons remained constant at 3-5% over the first 14 d in culture. From 14 to 28 d, the total number of neurons decreased with little change in the number of serotonin neurons, such that, by day 28 in culture, up to 36% of surviving neurons exhibited serotonin immunoreactivity. Similar percentages of cultured brain stem neurons accumulating 3H-serotonin were identified by autoradiography. Uptake was abolished by the serotonin-uptake inhibitor, clomipramine, but was unaffected by excess norepinephrine, or by the norepinephrine-uptake inhibitor, maprotiline. Synthesis of 3H-serotonin was detected after incubation of cultures with 3H-tryptophan, and newly synthesized serotonin was released by potassium depolarization in a calcium- dependent manner. More than 95% of serotonin neurons were destroyed after incubation of cultures with 5,6-dihydroxytryptamine. Brain-stem cultures contained virtually no neurons with the ability to accumulate 3H-norepinephrine or 3H-dopamine. Approximately 40% of brain-stem neurons were labeled with gamma-aminobutyric acid (3H-GABA). However, there was almost no overlap in the surface area of neurons accumulating 3H-serotonin or 3H-GABA.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Axelrod D., Ravdin P., Koppel D. E., Schlessinger J., Webb W. W., Elson E. L., Podleski T. R. Lateral motion of fluorescently labeled acetylcholine receptors in membranes of developing muscle fibers. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4594–4598. doi: 10.1073/pnas.73.12.4594. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BORNSTEIN M. B. Reconstituted rattail collagen used as substrate for tissue cultures on coverslips in Maximow slides and roller tubes. Lab Invest. 1958 Mar-Apr;7(2):134–137. [PubMed] [Google Scholar]
- Bennett D. C. Morphogenesis of branching tubules in cultures of cloned mammary epithelial cells. Nature. 1980 Jun 26;285(5767):657–659. doi: 10.1038/285657a0. [DOI] [PubMed] [Google Scholar]
- Bignami A., Eng L. F., Dahl D., Uyeda C. T. Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res. 1972 Aug 25;43(2):429–435. doi: 10.1016/0006-8993(72)90398-8. [DOI] [PubMed] [Google Scholar]
- Björklund A., Horn A. S., Baumgarten H. G., Nobin A., Schlossberger H. G. Neurotoxicity of hydroxylated tryptamines: structure-activity relationships. 2. In vitro studies on monoamine uptake inhibition and uptake impairment. Acta Physiol Scand Suppl. 1975;429:29–60. [PubMed] [Google Scholar]
- Björklund A., Nobin A., Stenevi U. Regeneration of central serotonin neurons after axonal degeneration induced by 5,6-dihydroxytryptamine. Brain Res. 1973 Feb 14;50(1):214–220. doi: 10.1016/0006-8993(73)90611-2. [DOI] [PubMed] [Google Scholar]
- Björklund A., Stenevi U., Svendgaard N. Growth of transplanted monoaminergic neurones into the adult hippocampus along the perforant path. Nature. 1976 Aug 26;262(5571):787–790. doi: 10.1038/262787a0. [DOI] [PubMed] [Google Scholar]
- Bloom F. E., Hoffer B. J., Siggins G. R., Barker J. L., Nicoll R. A. Effects of serotonin on central neurons: microiontophoretic administration. Fed Proc. 1972 Jan-Feb;31(1):97–106. [PubMed] [Google Scholar]
- Boireau A., Ternaux J. P., Bourgoin S., Hery F., Glowinski J., Hamon M. The determination of picogram levels of 5-HT in biological fluids. J Neurochem. 1976 Jan;26(1):201–204. [PubMed] [Google Scholar]
- Currie D. N., Dutton G. R. [3H]GABA uptake as a marker for cell type in primary cultures of cerebellum and olfactory bulb. Brain Res. 1980 Oct 20;199(2):473–481. doi: 10.1016/0006-8993(80)90706-4. [DOI] [PubMed] [Google Scholar]
- Dreyfus C. F., Bornstein M. B. Synthesis of serotonin by neurons of the myenteric plexus in situ and in organotypic tissue culture. Brain Res. 1977 Jun 3;128(1):125–139. doi: 10.1016/0006-8993(77)90240-2. [DOI] [PubMed] [Google Scholar]
- Dreyfus C. F., Sherman D. L., Gershon M. D. Uptake of serotonin by intrinsic neurons of the myenteric plexus grown in organotypic tissue culture. Brain Res. 1977 Jun 3;128(1):109–123. doi: 10.1016/0006-8993(77)90239-6. [DOI] [PubMed] [Google Scholar]
- Engvall E., Ruoslahti E. Binding of soluble form of fibroblast surface protein, fibronectin, to collagen. Int J Cancer. 1977 Jul 15;20(1):1–5. doi: 10.1002/ijc.2910200102. [DOI] [PubMed] [Google Scholar]
- Epstein M. L., Sherman D., Gershon M. D. Development of serotonergic neurons in the chick duodenum. Dev Biol. 1980 Jun 1;77(1):22–40. doi: 10.1016/0012-1606(80)90454-6. [DOI] [PubMed] [Google Scholar]
- Gershon M. D., Epstein M. L., Hegstrand L. Colonization of the chick gut by progenitors of enteric serotonergic neurons: distribution, differentiation, and maturation within the gut. Dev Biol. 1980 Jun 1;77(1):41–51. doi: 10.1016/0012-1606(80)90455-8. [DOI] [PubMed] [Google Scholar]
- Goldberg D. J., Schwartz J. H., Sherbany A. A. Kinetic properties of normal and perturbed axonal transport of serotonin in a single identified axon. J Physiol. 1978 Aug;281:559–579. doi: 10.1113/jphysiol.1978.sp012439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halgren E., Varon S. Serotonin turnover in cultured raphe nuclei from newborn rat: in vitro development and drug effects. Brain Res. 1972 Dec 24;48:438–442. doi: 10.1016/0006-8993(72)90207-7. [DOI] [PubMed] [Google Scholar]
- Hildebrand J. G., Barker D. L., Herbert E., Kravitz E. A. Screening for neurotransmitters: a rapid radiochemical procedure. J Neurobiol. 1971;2(3):231–246. doi: 10.1002/neu.480020305. [DOI] [PubMed] [Google Scholar]
- Hökfelt T., Ljungdahl A., Steinbusch H., Verhofstad A., Nilsson G., Brodin E., Pernow B., Goldstein M. Immunohistochemical evidence of substance P-like immunoreactivity in some 5-hydroxytryptamine-containing neurons in the rat central nervous system. Neuroscience. 1978;3(6):517–538. doi: 10.1016/0306-4522(78)90017-9. [DOI] [PubMed] [Google Scholar]
- Joh T. H., Shikimi T., Pickel V. M., Reis D. J. Brain tryptophan hydroxylase: purification of, production of antibodies to, and cellular and ultrastructural localization in serotonergic neurons of rat midbrain. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3575–3579. doi: 10.1073/pnas.72.9.3575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lauder J. M., Bloom F. E. Ontogeny of monoamine neurons in the locus coeruleus, Raphe nuclei and substantia nigra of the rat. I. Cell differentiation. J Comp Neurol. 1974 Jun 15;155(4):469–481. doi: 10.1002/cne.901550407. [DOI] [PubMed] [Google Scholar]
- Lauder J. M., Krebs H. Serotonin as a differentiation signal in early neurogenesis. Dev Neurosci. 1978;1(1):15–30. doi: 10.1159/000112549. [DOI] [PubMed] [Google Scholar]
- Levitt P., Moore R. Y. Developmental organization of raphe serotonin neuron groups in the rat. Anat Embryol (Berl) 1978 Sep 27;154(3):241–251. doi: 10.1007/BF00345655. [DOI] [PubMed] [Google Scholar]
- Lidov H. G., Grzanna R., Molliver M. E. The serotonin innervation of the cerebral cortex in the rat--an immunohistochemical analysis. Neuroscience. 1980;5(2):207–227. doi: 10.1016/0306-4522(80)90099-8. [DOI] [PubMed] [Google Scholar]
- Olson L., Seiger A. Early prenatal ontogeny of central monoamine neurons in the rat: fluorescence histochemical observations. Z Anat Entwicklungsgesch. 1972;137(3):301–316. doi: 10.1007/BF00519099. [DOI] [PubMed] [Google Scholar]
- Prochiantz A., di Porzio U., Kato A., Berger B., Glowinski J. In vitro maturation of mesencephalic dopaminergic neurons from mouse embryos is enhanced in presence of their striatal target cells. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5387–5391. doi: 10.1073/pnas.76.10.5387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlumpf M., Shoemaker W. J., Bloom F. E. Explant cultures of catecholamine-containing neurons from rat brain: biochemical, histofluorescence, and electron microscopic studies. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4471–4475. doi: 10.1073/pnas.74.10.4471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlumpf M., Shoemaker W. J., Bloom F. E. Innervation of embryonic rat cerebral cortex by catecholamine-containing fibers. J Comp Neurol. 1980 Jul 15;192(2):361–376. doi: 10.1002/cne.901920210. [DOI] [PubMed] [Google Scholar]
- Steinbusch H. W., Verhofstad A. A., Joosten H. W. Localization of serotonin in the central nervous system by immunohistochemistry: description of a specific and sensitive technique and some applications. Neuroscience. 1978;3(9):811–819. doi: 10.1016/0306-4522(78)90033-7. [DOI] [PubMed] [Google Scholar]
- Streit P. Selective retrograde labeling indicating the transmitter of neuronal pathways. J Comp Neurol. 1980 Jun;191(3):429–463. doi: 10.1002/cne.901910308. [DOI] [PubMed] [Google Scholar]
- Varon S., Nomura J., Shooter E. M. The isolation of the mouse nerve growth factor protein in a high molecular weight form. Biochemistry. 1967 Jul;6(7):2202–2209. doi: 10.1021/bi00859a043. [DOI] [PubMed] [Google Scholar]
- Wood J. N., Anderton B. H. Monoclonal antibodies to mammalian neurofilaments. Biosci Rep. 1981 Mar;1(3):263–268. doi: 10.1007/BF01114913. [DOI] [PubMed] [Google Scholar]
- di Porzio U., Daguet M. C., Glowinski J., Prochiantz A. Effect of striatal cells on in vitro maturation of mesencephalic dopaminergic neurones grown in serum-free conditions. Nature. 1980 Nov 27;288(5789):370–373. doi: 10.1038/288370a0. [DOI] [PubMed] [Google Scholar]