Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Nov 1;91(2):427–437. doi: 10.1083/jcb.91.2.427

Structural features of alveolar wall basement membrane in the adult rat lung

PMCID: PMC2111956  PMID: 7198126

Abstract

The ultrastructural characteristics of alveolar (ABM) and capillary (CBM) basement membranes in the adult rat lung have been defined using tannic acid fixation, ruthenium red staining, or incubation in guanidine HCl. ABM is dense and amorphous, has 3- to 5-nm filaments in the lamina rara externa (facing the alveolus) that run between the lamina densa and the basal cell surface of the epithelium, has an orderly array of ruthenium red-positive anionic sites that appear predominantly (79%) on the lamina rara externa, and has discontinuities beneath alveolar type II cells but not type I cells that allow penetration of type II cytoplasmic processes into the interstitium of the alveolar wall. The CBM is fibrillar and less compact than ABM, has no lamina rara filaments, and has one fifth the number of ruthenium red- positive anionic sites of ABM that appear predominantly (64%) overlying the lamina densa. Incubation of lung tissue with Flavobacterium heparinum enzyme or with chondroitinase has shown that ABM anionic sites represent heparan sulfate proteoglycans, whereas CBM anionic sites contain this and other sulfated proteoglycans. The CBM fuses in a local fashion with ABM, compartmentalizing the alveolar wall into a thick and thin side and establishing a thin, single, basement-membrane gas-exchange surface between alveolar air, and capillary blood. The potential implications of ABM and CBM ultrastructure for permeability, cell differentiation, and repair and morphogenesis of the lung are discussed.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bencosme S. A., Tsutsumi V. Fast method for processing biologic material for electron microscopy. Lab Invest. 1970 Oct;23(4):447–450. [PubMed] [Google Scholar]
  2. Benjamin J. J., Murtagh P. S., Proctor D. F., Menkes H. A., Permutt S. Pulmonary vascular interdependence in excised dog lobes. J Appl Physiol. 1974 Dec;37(6):887–894. doi: 10.1152/jappl.1974.37.6.887. [DOI] [PubMed] [Google Scholar]
  3. Bluemink J. G., Van Maurik P., Lawson K. A. Intimate cell contacts at the epithelial/mesenchymal interface in embryonic mouse lung. J Ultrastruct Res. 1976 May;55(2):257–270. doi: 10.1016/s0022-5320(76)80071-8. [DOI] [PubMed] [Google Scholar]
  4. Brenner B. M., Hostetter T. H., Humes H. D. Molecular basis of proteinuria of glomerular origin. N Engl J Med. 1978 Apr 13;298(15):826–833. doi: 10.1056/NEJM197804132981507. [DOI] [PubMed] [Google Scholar]
  5. Bride J., Gomot L. Changes at the ecto-mesodermal interface during development of the duck preen gland. Cell Tissue Res. 1978 Nov 9;194(1):141–149. doi: 10.1007/BF00209240. [DOI] [PubMed] [Google Scholar]
  6. Brigham K. L. Factors affecting lung vascular permeability. Am Rev Respir Dis. 1977 Jun;115(6 Pt 2):165–172. doi: 10.1164/arrd.1977.115.S.165. [DOI] [PubMed] [Google Scholar]
  7. Brody J. S., Burki R., Kaplan N. Deoxyribonucleic acid synthesis in lung cells during compensatory lung growth after pneumonectomy. Am Rev Respir Dis. 1978 Feb;117(2):307–316. doi: 10.1164/arrd.1978.117.2.307. [DOI] [PubMed] [Google Scholar]
  8. Caulfield J. P. Alterations in the distribution of Alcian blue-staining fibrillar anionic sites in the glomerular basement membrane in aminonucleoside nephrosis. Lab Invest. 1979 Apr;40(4):503–511. [PubMed] [Google Scholar]
  9. Cottrell T. S., Levine O. R., Senior R. M., Wiener J., Spiro D., Fishman A. P. Electron microscopic alterations at the alveolar level in pulmonary edema. Circ Res. 1967 Dec;21(6):783–797. doi: 10.1161/01.res.21.6.783. [DOI] [PubMed] [Google Scholar]
  10. Culp L. A., Rollins B. J., Buniel J., Hitri S. Two functionally distinct pools of glycosaminoglycan in the substrate adhesion site of murine cells. J Cell Biol. 1978 Dec;79(3):788–801. doi: 10.1083/jcb.79.3.788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cutler L. S., Chaudhry A. P. Intercellular contacts at the epithelial-mesenchymal interface during the prenatal development of the rat submandibular gland. Dev Biol. 1973 Aug;33(2):229–240. doi: 10.1016/0012-1606(73)90133-4. [DOI] [PubMed] [Google Scholar]
  12. Dobbs L. G., Mason R. J. Pulmonary alveolar type II cells isolated from rats. Release of phosphatidylcholine in response to beta-adrenergic stimulation. J Clin Invest. 1979 Mar;63(3):378–387. doi: 10.1172/JCI109313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Evans M. J., Cabral L. J., Stephens R. J., Freeman G. Transformation of alveolar type 2 cells to type 1 cells following exposure to NO2. Exp Mol Pathol. 1975 Feb;22(1):142–150. doi: 10.1016/0014-4800(75)90059-3. [DOI] [PubMed] [Google Scholar]
  14. Foidart J. M., Bere E. W., Jr, Yaar M., Rennard S. I., Gullino M., Martin G. R., Katz S. I. Distribution and immunoelectron microscopic localization of laminin, a noncollagenous basement membrane glycoprotein. Lab Invest. 1980 Mar;42(3):336–342. [PubMed] [Google Scholar]
  15. Gill P. J., Adler J., Silbert C. K., Silbert J. E. Removal of glycosaminoglycans from cultures of human skin fibroblasts. Biochem J. 1981 Jan 15;194(1):299–307. doi: 10.1042/bj1940299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gordon J. R., Bernfield M. R. The basal lamina of the postnatal mammary epithelium contains glycosaminoglycans in a precise ultrastructural organization. Dev Biol. 1980 Jan;74(1):118–135. doi: 10.1016/0012-1606(80)90056-1. [DOI] [PubMed] [Google Scholar]
  17. Huang T. W. Composite epithelial and endothelial basal laminas in human lungs. A structural basis for their separation and apposition in reaction to injury. Am J Pathol. 1978 Dec;93(3):681–692. [PMC free article] [PubMed] [Google Scholar]
  18. KARRER H. E. The ultrastructure of mouse lung; general architecture of capillary and alveolar walls. J Biophys Biochem Cytol. 1956 May 25;2(3):241–252. doi: 10.1083/jcb.2.3.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. KARRER H. E. The ultrastructure of mouse lung; some remarks regarding the fine structure of the alveolar basement membrane. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):287–292. doi: 10.1083/jcb.2.4.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kanwar Y. S., Farquhar M. G. Anionic sites in the glomerular basement membrane. In vivo and in vitro localization to the laminae rarae by cationic probes. J Cell Biol. 1979 Apr;81(1):137–153. doi: 10.1083/jcb.81.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kanwar Y. S., Farquhar M. G. Detachment of endothelium and epithelium from the glomerular basement membrane produced by kidney perfusion with neuraminidase. Lab Invest. 1980 Mar;42(3):375–384. [PubMed] [Google Scholar]
  22. Kanwar Y. S., Linker A., Farquhar M. G. Increased permeability of the glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparan sulfate) by enzyme digestion. J Cell Biol. 1980 Aug;86(2):688–693. doi: 10.1083/jcb.86.2.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kelley V. E., Cavallo T. Glomerular permeability: focal loss of anionic sites in glomeruli of proteinuric mice with lupus nephritis. Lab Invest. 1980 Jan;42(1):59–64. [PubMed] [Google Scholar]
  24. Klebe R. J., Bentley K. L., Sasser P. J., Schoen R. C. Elution of fibronectin from collagen with chaotrophic agents. Exp Cell Res. 1980 Nov;130(1):111–117. doi: 10.1016/0014-4827(80)90047-6. [DOI] [PubMed] [Google Scholar]
  25. LOW F. N. The pulmonary alveolar epithelium of laboratory mammals and man. Anat Rec. 1953 Oct;117(2):241–263. doi: 10.1002/ar.1091170208. [DOI] [PubMed] [Google Scholar]
  26. Liotta L. A., Tryggvason K., Garbisa S., Hart I., Foltz C. M., Shafie S. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature. 1980 Mar 6;284(5751):67–68. doi: 10.1038/284067a0. [DOI] [PubMed] [Google Scholar]
  27. Madri J. A., Furthmayr H. Collagen polymorphism in the lung. An immunochemical study of pulmonary fibrosis. Hum Pathol. 1980 Jul;11(4):353–366. doi: 10.1016/s0046-8177(80)80031-1. [DOI] [PubMed] [Google Scholar]
  28. Madri J. A., Roll F. J., Furthmayr H., Foidart J. M. Ultrastructural localization of fibronectin and laminin in the basement membranes of the murine kidney. J Cell Biol. 1980 Aug;86(2):682–687. doi: 10.1083/jcb.86.2.682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Perkins M. E., Ji T. H., Hynes R. O. Cross-linking of fibronectin to sulfated proteoglycans at the cell surface. Cell. 1979 Apr;16(4):941–952. doi: 10.1016/0092-8674(79)90109-0. [DOI] [PubMed] [Google Scholar]
  30. Ryan S. F. The structure of the interalveolar septum of the mammalian lung. Anat Rec. 1969 Dec;165(4):467–483. doi: 10.1002/ar.1091650403. [DOI] [PubMed] [Google Scholar]
  31. Saxén L., Lehtonen E. Transfilter induction of kidney tubules as a function of the extent and duration of intercellular contacts. J Embryol Exp Morphol. 1978 Oct;47:97–109. [PubMed] [Google Scholar]
  32. Schneeberger E. E., Karnovsky M. J. Substructure of intercellular junctions in freeze-fractured alveolar-capillary membranes of mouse lung. Circ Res. 1976 May;38(5):404–411. doi: 10.1161/01.res.38.5.404. [DOI] [PubMed] [Google Scholar]
  33. Schubert D., LaCorbiere M. A role of secreted glycosaminoglycans in cell-substratum adhesion. J Biol Chem. 1980 Dec 10;255(23):11564–11569. [PubMed] [Google Scholar]
  34. Singley C. T., Solursh M. The use of tannic acid for the ultrastructural visualization of hyaluronic acid. Histochemistry. 1980 Feb;65(2):93–102. doi: 10.1007/BF00493158. [DOI] [PubMed] [Google Scholar]
  35. Smith B. T., Galaugher W., Thurlbeck W. M. Serum from pneumonectomized rabbits stimulates alveolar type II cell proliferation in vitro. Am Rev Respir Dis. 1980 Apr;121(4):701–707. doi: 10.1164/arrd.1980.121.4.701. [DOI] [PubMed] [Google Scholar]
  36. Smith B. T. Lung maturation in the fetal rat: acceleration by injection of fibroblast-pneumonocyte factor. Science. 1979 Jun 8;204(4397):1094–1095. doi: 10.1126/science.582216. [DOI] [PubMed] [Google Scholar]
  37. Smith L. J., Brody J. S. Influence of methylprednisolone on mouse alveolar type 2 cell response to acute lung injury. Am Rev Respir Dis. 1981 Apr;123(4 Pt 1):459–464. doi: 10.1164/arrd.1981.123.4.459. [DOI] [PubMed] [Google Scholar]
  38. Stenman S., Vaheri A. Distribution of a major connective tissue protein, fibronectin, in normal human tissues. J Exp Med. 1978 Apr 1;147(4):1054–1064. doi: 10.1084/jem.147.4.1054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Thurlbeck W. M. Postnatal growth and development of the lung. Am Rev Respir Dis. 1975 Jun;111(6):803–844. doi: 10.1164/arrd.1975.111.6.803. [DOI] [PubMed] [Google Scholar]
  40. Vaccaro C. A., Brody J. S. Ultrastructural localization and characterization of proteoglycans in the pulmonary alveolus. Am Rev Respir Dis. 1979 Oct;120(4):901–910. doi: 10.1164/arrd.1979.120.4.901. [DOI] [PubMed] [Google Scholar]
  41. Vracko R. Basal lamina scaffold-anatomy and significance for maintenance of orderly tissue structure. Am J Pathol. 1974 Nov;77(2):314–346. [PMC free article] [PubMed] [Google Scholar]
  42. Weibel E. R. Morphological basis of alveolar-capillary gas exchange. Physiol Rev. 1973 Apr;53(2):419–495. doi: 10.1152/physrev.1973.53.2.419. [DOI] [PubMed] [Google Scholar]
  43. Yamada K. M., Kennedy D. W., Kimata K., Pratt R. M. Characterization of fibronectin interactions with glycosaminoglycans and identification of active proteolytic fragments. J Biol Chem. 1980 Jul 10;255(13):6055–6063. [PubMed] [Google Scholar]
  44. Yamagata T., Saito H., Habuchi O., Suzuki S. Purification and properties of bacterial chondroitinases and chondrosulfatases. J Biol Chem. 1968 Apr 10;243(7):1523–1535. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES