Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Nov 1;91(2):479–487. doi: 10.1083/jcb.91.2.479

Taxol binds to polymerized tubulin in vitro

J Parness, SB Horwitz
PMCID: PMC2111958  PMID: 6118377

Abstract

Taxol, a natural plant product that enhances the rate and extent of microtubule assembly in vitro and stabilizes microtubules in vitro and in cells, was labeled with tritium by catalytic exchange with (3)H(2)O. The binding of [(3)H]taxol to microtubule protein was studied by a sedimentation assay. Microtubules assembled in the presence of [(3)H]taxol bind drug specifically with an apparent binding constant, K(app), of 8.7 x 19(-7) M and binding saturates with a calculated maximal binding ration, B(max), of 0.6 mol taxol bound/mol tubulin dimer. [(3)H]Taxol also binds and assembles phosphocellulose-purified tubulin, and we suggest that taxol stabilizes interactions between dimers that lead to microtubule polymer formation. With both microtubule protein and phosphocellulose- purified tubulin, binding saturation occurs at approximate stoichiometry with the tubulin dimmer concentration. Under assembly conditions, podophyllotoxin and vinblastine inhibit the binding of [(3)H]taxol to microtubule protein in a complex manner which we believe reflects a competition between these drugs, not for a single binding site, but for different forms (dimer and polymer) of tubulin. Steady-state microtubules assembled with GTP or with 5’-guanylyl-α,β-methylene diphosphonate (GPCPP), a GTP analog reported to inhibit microtubule treadmilling (I.V. Sandoval and K. Weber. 1980. J. Biol. Chem. 255:6966-6974), bind [(3)H]taxol with approximately the same stoichiometry as microtubules assembled in the presence of [(3)H]taxol. Such data indicate that a taxol binding site exists on the intact microtubule. Unlabeled taxol competitively displaces [(3)H]taxol from microtubules, while podophyllotoxin, vinblastine, and CaCl(2) do not. Podophyllotoxin and vinblastine, however, reduce the mass of sedimented taxol-stabilized microtubules, but the specific activity of bound [(3)H]taxol in the pellet remains constant. We conclude that taxol binds specifically and reversibly to a polymerized form of tubulin with a stoichiometry approaching unity.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asnes C. F., Wilson L. Isolation of bovine brain microtubule protein without glycerol: polymerization kinetics change during purification cycles. Anal Biochem. 1979 Sep 15;98(1):64–73. doi: 10.1016/0003-2697(79)90706-1. [DOI] [PubMed] [Google Scholar]
  2. Baum S. G., Wittner M., Nadler J. P., Horwitz S. B., Dennis J. E., Schiff P. B., Tanowitz H. B. Taxol, a microtubule stabilizing agent, blocks the replication of Trypanosoma cruzi. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4571–4575. doi: 10.1073/pnas.78.7.4571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bensadoun A., Weinstein D. Assay of proteins in the presence of interfering materials. Anal Biochem. 1976 Jan;70(1):241–250. doi: 10.1016/s0003-2697(76)80064-4. [DOI] [PubMed] [Google Scholar]
  4. Bergen L. G., Borisy G. G. Head-to-tail polymerization of microtubules in vitro. Electron microscope analysis of seeded assembly. J Cell Biol. 1980 Jan;84(1):141–150. doi: 10.1083/jcb.84.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berkowitz S. A., Katagiri J., Binder H. K., Williams R. C., Jr Separation and characterization of microtubule proteins from calf brain. Biochemistry. 1977 Dec 13;16(25):5610–5617. doi: 10.1021/bi00644a035. [DOI] [PubMed] [Google Scholar]
  6. Borisy G. G., Olmsted J. B., Marcum J. M., Allen C. Microtubule assembly in vitro. Fed Proc. 1974 Feb;33(2):167–174. [PubMed] [Google Scholar]
  7. Borisy G. G., Olmsted J. B. Nucleated assembly of microtubules in porcine brain extracts. Science. 1972 Sep 29;177(4055):1196–1197. doi: 10.1126/science.177.4055.1196. [DOI] [PubMed] [Google Scholar]
  8. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  9. Brenner S. L., Korn E. D. Substoichiometric concentrations of cytochalasin D inhibit actin polymerization. Additional evidence for an F-actin treadmill. J Biol Chem. 1979 Oct 25;254(20):9982–9985. [PubMed] [Google Scholar]
  10. Delacourte A., Plancot M. T., Han K. K., Hildebrand H., Biserte G. Investigation of tubulin fibers formed during microtubule polymerization cycles. FEBS Lett. 1977 May 1;77(1):41–46. doi: 10.1016/0014-5793(77)80189-0. [DOI] [PubMed] [Google Scholar]
  11. Gaskin F., Cantor C. R., Shelanski M. L. Turbidimetric studies of the in vitro assembly and disassembly of porcine neurotubules. J Mol Biol. 1974 Nov 15;89(4):737–755. doi: 10.1016/0022-2836(74)90048-5. [DOI] [PubMed] [Google Scholar]
  12. Heidemann S. R., Gallas P. T. The effect of taxol on living eggs of Xenopus laevis. Dev Biol. 1980 Dec;80(2):489–494. doi: 10.1016/0012-1606(80)90421-2. [DOI] [PubMed] [Google Scholar]
  13. Himes R. H., Kersey R. N., Heller-Bettinger I., Samson F. E. Action of the vinca alkaloids vincristine, vinblastine, and desacetyl vinblastine amide on microtubules in vitro. Cancer Res. 1976 Oct;36(10):3798–3802. [PubMed] [Google Scholar]
  14. Karr T. L., Kristofferson D., Purich D. L. Calcium ion induces endwise depolymerization of bovine brain microtubules. J Biol Chem. 1980 Dec 25;255(24):11853–11856. [PubMed] [Google Scholar]
  15. Karr T. L., Kristofferson D., Purich D. L. Mechanism of microtubule depolymerization. Correlation of rapid induced disassembly experiments with a kinetic model for endwise depolymerization. J Biol Chem. 1980 Sep 25;255(18):8560–8566. [PubMed] [Google Scholar]
  16. Karr T. L., Purich D. L. A microtubule assembly/disassembly model based on drug effects and depolymerization kinetics after rapid dilution. J Biol Chem. 1979 Nov 10;254(21):10885–10888. [PubMed] [Google Scholar]
  17. Koshland D. E., Jr, Némethy G., Filmer D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry. 1966 Jan;5(1):365–385. doi: 10.1021/bi00865a047. [DOI] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Lee J. C., Timasheff S. N. The reconstitution of microtubules from purified calf brain tubulin. Biochemistry. 1975 Nov 18;14(23):5183–5187. doi: 10.1021/bi00694a025. [DOI] [PubMed] [Google Scholar]
  20. Loike J. D., Horwitz S. B. Effects of podophyllotoxin and VP-16-213 on microtubule assembly in vitro and nucleoside transport in HeLa cells. Biochemistry. 1976 Dec 14;15(25):5435–5443. doi: 10.1021/bi00670a003. [DOI] [PubMed] [Google Scholar]
  21. Margolis R. L., Wilson L. Opposite end assembly and disassembly of microtubules at steady state in vitro. Cell. 1978 Jan;13(1):1–8. doi: 10.1016/0092-8674(78)90132-0. [DOI] [PubMed] [Google Scholar]
  22. Masurovsky E. B., Peterson E. R., Crain S. M., Horwitz S. B. Microtubule arrays in taxol-treated mouse dorsal root ganglion-spinal cord cultures. Brain Res. 1981 Aug 3;217(2):392–398. doi: 10.1016/0006-8993(81)90017-2. [DOI] [PubMed] [Google Scholar]
  23. McClure W. O., Paulson J. C. The interaction of colchicine and some related alkaloids with rat brain tubulin. Mol Pharmacol. 1977 May;13(3):560–575. [PubMed] [Google Scholar]
  24. OOSAWA F., KASAI M. A theory of linear and helical aggregations of macromolecules. J Mol Biol. 1962 Jan;4:10–21. doi: 10.1016/s0022-2836(62)80112-0. [DOI] [PubMed] [Google Scholar]
  25. Sandoval I. V., Weber K. Guanasone 5'-(alpha,beta-methylene)triphosphate enhances specifically microtubule nucleation and stops the treadmill of tubulin protomers. J Biol Chem. 1980 Jul 25;255(14):6966–6974. [PubMed] [Google Scholar]
  26. Schiff P. B., Fant J., Horwitz S. B. Promotion of microtubule assembly in vitro by taxol. Nature. 1979 Feb 22;277(5698):665–667. doi: 10.1038/277665a0. [DOI] [PubMed] [Google Scholar]
  27. Schiff P. B., Horwitz S. B. Taxol assembles tubulin in the absence of exogenous guanosine 5'-triphosphate or microtubule-associated proteins. Biochemistry. 1981 May 26;20(11):3247–3252. doi: 10.1021/bi00514a041. [DOI] [PubMed] [Google Scholar]
  28. Schiff P. B., Horwitz S. B. Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1561–1565. doi: 10.1073/pnas.77.3.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schiff P. B., Kende A. S., Horwitz S. B. Steganacin: an inhibitor of HeLa cell growth and microtubule assembly in vitro. Biochem Biophys Res Commun. 1978 Nov 29;85(2):737–746. doi: 10.1016/0006-291x(78)91223-8. [DOI] [PubMed] [Google Scholar]
  30. Shelanski M. L., Gaskin F., Cantor C. R. Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci U S A. 1973 Mar;70(3):765–768. doi: 10.1073/pnas.70.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sternlicht H., Ringel I. Colchicine inhibition of microtubule assembly via copolymer formation. J Biol Chem. 1979 Oct 25;254(20):10540–10550. [PubMed] [Google Scholar]
  32. Summers K., Kirschner M. W. Characteristics of the polar assembly and disassembly of microtubules observed in vitro by darkfield light microscopy. J Cell Biol. 1979 Oct;83(1):205–217. doi: 10.1083/jcb.83.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wani M. C., Taylor H. L., Wall M. E., Coggon P., McPhail A. T. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc. 1971 May 5;93(9):2325–2327. doi: 10.1021/ja00738a045. [DOI] [PubMed] [Google Scholar]
  34. Warfield R. K., Bouck G. B. Microtubule-macrotubule transitions: intermediates after exposure to the mitotic inhibitor vinblastine. Science. 1974 Dec 27;186(4170):1219–1221. doi: 10.1126/science.186.4170.1219. [DOI] [PubMed] [Google Scholar]
  35. Weingarten M. D., Lockwood A. H., Hwo S. Y., Kirschner M. W. A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A. 1975 May;72(5):1858–1862. doi: 10.1073/pnas.72.5.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wieland T. Modification of actins by phallotoxins. Naturwissenschaften. 1977 Jun;64(6):303–309. doi: 10.1007/BF00446784. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES