Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Nov 1;91(2):414–419. doi: 10.1083/jcb.91.2.414

Observations on intracellular pH during cleavage of eggs of Xenopus laevis

PMCID: PMC2111967  PMID: 7198125

Abstract

Direct measurements of intracellular pH was made with recessed-tip pH microelectrodes in fertilized eggs of the frog, Xenopus laevis, from approximately 1 h after fertilization to mid-blastula. The intracellular pH just before first cleavage was 7.65 +/- 0.04 (SD; n = 9). By stage 5 to the middle of stage 6, average intracellular pH was 7.70 +/- 0.06 (SD; n = 16). A statistically significant alkalization of 0.18 +/- 0.03 pH unit (SD; n = 5) was observed beginning in early blastula. A cycle of less than or equal to 0.05 pH unit was occasionally observed during the pre-blastula period, but its significance is unknown. By exposing the early cleavage embryo to saline buffered with sodium propionate, pH 4.7-5.0, it was possible to lower intracellular pH with some degree of control. Apparently, normal cleavage continued to occur when intracellular pH had been forced as much as 0.3 unit below normal. We conclude that this implies no specific involvement of intracellular pH in mitosis and cytokinesis. If intracellular pH was lowered further, cell division ceased at about pH 7.2, and furrow regression began at about pH 7.0. Once furrow regression occurred, subsequent development was usually arrested or abnormal when the embryo was transferred back to normal saline.

Full Text

The Full Text of this article is available as a PDF (597.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker P. F., Warner A. E. Intracellular calcium and cell cleavage in early embryos of Xenopus laevis. J Cell Biol. 1972 May;53(2):579–581. doi: 10.1083/jcb.53.2.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bozhkova V. P., Kvavilashvili I. Sh, Rott N. N., Chailakhyan L. M. Measurement of electrical coupling between cells of axolotl embryos during cleavage divisions. Sov J Dev Biol. 1974 Sep;4(5):480–482. [PubMed] [Google Scholar]
  3. Cande W. Z. A permeabilized cell model for studying cytokinesis using mammalian tissue culture cells. J Cell Biol. 1980 Nov;87(2 Pt 1):326–335. doi: 10.1083/jcb.87.2.326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gillies R. J., Deamer D. W. Intracellular pH changes during the cell cycle in Tetrahymena. J Cell Physiol. 1979 Jul;100(1):23–31. doi: 10.1002/jcp.1041000103. [DOI] [PubMed] [Google Scholar]
  5. Grainger J. L., Winkler M. M., Shen S. S., Steinhardt R. A. Intracellular pH controls protein synthesis rate in the sea urchine egg and early embryo. Dev Biol. 1979 Feb;68(2):396–406. doi: 10.1016/0012-1606(79)90213-6. [DOI] [PubMed] [Google Scholar]
  6. Hollinger T. G., Schuetz A. W. "Cleavage" and cortical granule breakdown in Rana pipiens oocytes induced by direct microinjection of calcium. J Cell Biol. 1976 Nov;71(2):395–401. doi: 10.1083/jcb.71.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ito S., Hori N. Electrical characteristics of Triturus egg cells during cleavage. J Gen Physiol. 1966 May;49(5):1019–1027. doi: 10.1085/jgp.49.5.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lee S. C., Steinhardt R. A. pH changes associated with meiotic maturation in oocytes of Xenopus laevis. Dev Biol. 1981 Jul 30;85(2):358–369. doi: 10.1016/0012-1606(81)90267-0. [DOI] [PubMed] [Google Scholar]
  9. Palmer J. F., Slack C. Some bio-electric parameters of early Xenopus embryos. J Embryol Exp Morphol. 1970 Nov;24(3):535–553. [PubMed] [Google Scholar]
  10. Ridgway E. B., Gilkey J. C., Jaffe L. F. Free calcium increases explosively in activating medaka eggs. Proc Natl Acad Sci U S A. 1977 Feb;74(2):623–627. doi: 10.1073/pnas.74.2.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rink T. J., Tsien R. Y., Warner A. E. Free calcium in Xenopus embryos measured with ion-selective microelectrodes. Nature. 1980 Feb 14;283(5748):658–660. doi: 10.1038/283658a0. [DOI] [PubMed] [Google Scholar]
  12. Schroeder T. E. Dynamics of the contractile ring. Soc Gen Physiol Ser. 1975;30:305–334. [PubMed] [Google Scholar]
  13. Schroeder T. E., Strickland D. L. Ionophore A23187, calcium and contractility in frog eggs. Exp Cell Res. 1974 Jan;83(1):139–142. doi: 10.1016/0014-4827(74)90696-x. [DOI] [PubMed] [Google Scholar]
  14. Shen S. S., Steinhardt R. A. Direct measurement of intracellular pH during metabolic derepression of the sea urchin egg. Nature. 1978 Mar 16;272(5650):253–254. doi: 10.1038/272253a0. [DOI] [PubMed] [Google Scholar]
  15. Shih R. J., O'Connor C. M., Keem K., Smith L. D. Kinetic analysis of amino acid pools and protein synthesis in amphibian oocytes and embryos. Dev Biol. 1978 Sep;66(1):172–182. doi: 10.1016/0012-1606(78)90282-8. [DOI] [PubMed] [Google Scholar]
  16. Slack C., Warner A. E. Intracellular and intercellular potentials in the early amphibian embryo. J Physiol. 1973 Jul;232(2):313–330. doi: 10.1113/jphysiol.1973.sp010272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Slack C., Warner A. E., Warren R. L. The distribution of sodium and potassium in amphibian embryos during early development. J Physiol. 1973 Jul;232(2):297–312. doi: 10.1113/jphysiol.1973.sp010271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Slack C., Wolpert L. Absence of intracellular potential gradients in amphibian embryos. Nat New Biol. 1972 Apr 5;236(66):153–155. doi: 10.1038/newbio236153a0. [DOI] [PubMed] [Google Scholar]
  19. Smith L. D., Ecker R. E. Uterine suppression of biochemical and morphogenetic events in Rana pipiens. Dev Biol. 1970 Aug;22(4):622–637. doi: 10.1016/0012-1606(70)90172-7. [DOI] [PubMed] [Google Scholar]
  20. Spray D. C., Harris A. L., Bennett M. V. Gap junctional conductance is a simple and sensitive function of intracellular pH. Science. 1981 Feb 13;211(4483):712–715. doi: 10.1126/science.6779379. [DOI] [PubMed] [Google Scholar]
  21. Thoman M., Gerhart J. C. Absence of dorsal-ventral differences in energy metabolism in early embryos of Xenopus laevis. Dev Biol. 1979 Jan;68(1):191–202. doi: 10.1016/0012-1606(79)90253-7. [DOI] [PubMed] [Google Scholar]
  22. Thomas R. C. Intracellular pH of snail neurones measured with a new pH-sensitive glass mirco-electrode. J Physiol. 1974 Apr;238(1):159–180. doi: 10.1113/jphysiol.1974.sp010516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Timourian H., Clothier G., Watchmaker G. Cleavage furrow: calcium as determinant of site. Exp Cell Res. 1972 Nov;75(1):296–298. doi: 10.1016/0014-4827(72)90555-1. [DOI] [PubMed] [Google Scholar]
  24. Turin L., Warner A. E. Intracellular pH in early Xenopus embryos: its effect on current flow between blastomeres. J Physiol. 1980 Mar;300:489–504. doi: 10.1113/jphysiol.1980.sp013174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Webb D. J., Nuccitelli R. Direct measurement of intracellular pH changes in Xenopus eggs at fertilization and cleavage. J Cell Biol. 1981 Nov;91(2 Pt 1):562–567. doi: 10.1083/jcb.91.2.562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Woodland H. R. Changes in the polysome content of developing Xenopus laevis embryos. Dev Biol. 1974 Sep;40(1):90–101. doi: 10.1016/0012-1606(74)90111-0. [DOI] [PubMed] [Google Scholar]
  27. Woodward D. J. Electrical signs of new membrane production during cleavage of Rana pipiens eggs. J Gen Physiol. 1968 Sep;52(3):509–531. doi: 10.1085/jgp.52.3.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. de Laat S. W., Buwalda R. J., Habets A. M. Intracellular ionic distribution, cell membrane permeability and membrane potential of the Xenopus egg during first cleavage. Exp Cell Res. 1974 Nov;89(1):1–14. doi: 10.1016/0014-4827(74)90180-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES