Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Nov 1;91(2):562–567. doi: 10.1083/jcb.91.2.562

Direct measurement of intracellular pH changes in Xenopus eggs at fertilization and cleavage

PMCID: PMC2111970  PMID: 6796594

Abstract

We have used Thomas-type recessed-tip pH-sensitive microelectrodes to measure the intracellular pH (pHi) in Xenopus eggs during both fertilization and ionophore activation. The average pHi in unfertilized eggs is 7.33 +/- 0.11 (SD; n = 21) with a resting membrane potential of -10.1 +/- 3.5 (SD; n = 38) mV. Within 2 min after the onset of the fertilization potential, there is a slight, transient pHi decrease of 0.03 +/- (SD, n = 8), followed by a distinct, permanent pHi increase of 0.31 +/- 0.11 (SD; n = 7) beginning approximately 10 min after the start of the fertilization potential and becoming complete approximately 1 h later. The pHi remains near this level of 7.67 +/- 0.13 (SD, n = 10) through at least 10 cleavage cycles, but it is possible to discern pHi oscillations with a mean amplitude of 0.03 +/- 0.02 (SD, n = 38). Eggs perfused for at least 2 h in Na+-free solution with 1 mM amiloride exhibited all of these pHi changes, so these changes do not require extracellular Na+. Similar cytoplasmic alkalinizations that accompany the activation of metabolism and the cell cycle in a wide variety of cell types are discussed.

Full Text

The Full Text of this article is available as a PDF (631.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barton J. K., den Hollander J. A., Lee T. M., MacLaughlin A., Shulman R. G. Measurement of the internal pH of yeast spores by 31P nuclear magnetic resonance. Proc Natl Acad Sci U S A. 1980 May;77(5):2470–2473. doi: 10.1073/pnas.77.5.2470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Begg D. A., Rebhun L. I. pH regulates the polymerization of actin in the sea urchin egg cortex. J Cell Biol. 1979 Oct;83(1):241–248. doi: 10.1083/jcb.83.1.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cross N. L., Elinson R. P. A fast block to polyspermy in frogs mediated by changes in the membrane potential. Dev Biol. 1980 Mar;75(1):187–198. doi: 10.1016/0012-1606(80)90154-2. [DOI] [PubMed] [Google Scholar]
  4. FRYDENBERG O., ZEUTHEN E. Oxygen uptake and carbon dioxide output related to the mitotic rhythm in the cleaving eggs of Dendraster excentricus and Urechis caupo. C R Trav Lab Carlsberg. 1960;31:423–455. [PubMed] [Google Scholar]
  5. Gerson D. F., Burton A. C. The relation of cycling of intracellular pH to mitosis in the acellular slime mould Physarum polycephalum. J Cell Physiol. 1977 May;91(2):297–303. doi: 10.1002/jcp.1040910214. [DOI] [PubMed] [Google Scholar]
  6. Gilkey J. C., Jaffe L. F., Ridgway E. B., Reynolds G. T. A free calcium wave traverses the activating egg of the medaka, Oryzias latipes. J Cell Biol. 1978 Feb;76(2):448–466. doi: 10.1083/jcb.76.2.448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gillies R. J., Deamer D. W. Intracellular pH changes during the cell cycle in Tetrahymena. J Cell Physiol. 1979 Jul;100(1):23–31. doi: 10.1002/jcp.1041000103. [DOI] [PubMed] [Google Scholar]
  8. Gillies R. J., Rosenberg M. P., Deamer D. W. Carbon dioxide efflux accompanies release of fertilization acid from sea urchin eggs. J Cell Physiol. 1981 Aug;108(2):115–122. doi: 10.1002/jcp.1041080202. [DOI] [PubMed] [Google Scholar]
  9. Gingell D. Contractile responses at the surface of an amphibian egg. J Embryol Exp Morphol. 1970 Jun;23(3):583–609. [PubMed] [Google Scholar]
  10. Grainger J. L., Winkler M. M., Shen S. S., Steinhardt R. A. Intracellular pH controls protein synthesis rate in the sea urchine egg and early embryo. Dev Biol. 1979 Feb;68(2):396–406. doi: 10.1016/0012-1606(79)90213-6. [DOI] [PubMed] [Google Scholar]
  11. Hara K., Tydeman P., Kirschner M. A cytoplasmic clock with the same period as the division cycle in Xenopus eggs. Proc Natl Acad Sci U S A. 1980 Jan;77(1):462–466. doi: 10.1073/pnas.77.1.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Johnson C. H., Epel D. Intracellular pH of sea urchin eggs measured by the dimethyloxazolidinedione (DMO) method. J Cell Biol. 1981 May;89(2):284–291. doi: 10.1083/jcb.89.2.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Johnson J. D., Epel D. Intracellular pH and activation of sea urchin eggs after fertilisation. Nature. 1976 Aug 19;262(5570):661–664. doi: 10.1038/262661a0. [DOI] [PubMed] [Google Scholar]
  14. Lee S. C., Steinhardt R. A. Observations on intracellular pH during cleavage of eggs of Xenopus laevis. J Cell Biol. 1981 Nov;91(2 Pt 1):414–419. doi: 10.1083/jcb.91.2.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lee S. C., Steinhardt R. A. pH changes associated with meiotic maturation in oocytes of Xenopus laevis. Dev Biol. 1981 Jul 30;85(2):358–369. doi: 10.1016/0012-1606(81)90267-0. [DOI] [PubMed] [Google Scholar]
  16. Meech R. W., Thomas R. C. The effect of calcium injection on the intracellular sodium and pH of snail neurones. J Physiol. 1977 Mar;265(3):867–879. doi: 10.1113/jphysiol.1977.sp011749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Moore R. D. Elevation of intracellular pH by insulin in frog skeletal muscle. Biochem Biophys Res Commun. 1979 Dec 14;91(3):900–904. doi: 10.1016/0006-291x(79)91964-8. [DOI] [PubMed] [Google Scholar]
  18. Nuccitelli R., Webb D. J., Lagier S. T., Matson G. B. 31P NMR reveals increased intracellular pH after fertilization in Xenopus eggs. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4421–4425. doi: 10.1073/pnas.78.7.4421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. O'Connor C. M., Smith L. D. Inhibition of oocyte maturation by theophylline: possible mechanism of action. Dev Biol. 1976 Sep;52(2):318–322. doi: 10.1016/0012-1606(76)90249-9. [DOI] [PubMed] [Google Scholar]
  20. Palmer J. F., Slack C. Some bio-electric parameters of early Xenopus embryos. J Embryol Exp Morphol. 1970 Nov;24(3):535–553. [PubMed] [Google Scholar]
  21. Ridgway E. B., Gilkey J. C., Jaffe L. F. Free calcium increases explosively in activating medaka eggs. Proc Natl Acad Sci U S A. 1977 Feb;74(2):623–627. doi: 10.1073/pnas.74.2.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rink T. J., Tsien R. Y., Warner A. E. Free calcium in Xenopus embryos measured with ion-selective microelectrodes. Nature. 1980 Feb 14;283(5748):658–660. doi: 10.1038/283658a0. [DOI] [PubMed] [Google Scholar]
  23. Schroeder T. E., Strickland D. L. Ionophore A23187, calcium and contractility in frog eggs. Exp Cell Res. 1974 Jan;83(1):139–142. doi: 10.1016/0014-4827(74)90696-x. [DOI] [PubMed] [Google Scholar]
  24. Setlow B., Setlow P. Measurements of the pH within dormant and germinated bacterial spores. Proc Natl Acad Sci U S A. 1980 May;77(5):2474–2476. doi: 10.1073/pnas.77.5.2474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Shen S. S., Steinhardt R. A. Direct measurement of intracellular pH during metabolic derepression of the sea urchin egg. Nature. 1978 Mar 16;272(5650):253–254. doi: 10.1038/272253a0. [DOI] [PubMed] [Google Scholar]
  26. Shen S. S., Steinhardt R. A. Intracellular pH and the sodium requirement at fertilisation. Nature. 1979 Nov 1;282(5734):87–89. doi: 10.1038/282087a0. [DOI] [PubMed] [Google Scholar]
  27. Shih R. J., O'Connor C. M., Keem K., Smith L. D. Kinetic analysis of amino acid pools and protein synthesis in amphibian oocytes and embryos. Dev Biol. 1978 Sep;66(1):172–182. doi: 10.1016/0012-1606(78)90282-8. [DOI] [PubMed] [Google Scholar]
  28. Slack C., Warner A. E., Warren R. L. The distribution of sodium and potassium in amphibian embryos during early development. J Physiol. 1973 Jul;232(2):297–312. doi: 10.1113/jphysiol.1973.sp010271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Smith L. D., Ecker R. E. Uterine suppression of biochemical and morphogenetic events in Rana pipiens. Dev Biol. 1970 Aug;22(4):622–637. doi: 10.1016/0012-1606(70)90172-7. [DOI] [PubMed] [Google Scholar]
  30. Steinhardt R., Zucker R., Schatten G. Intracellular calcium release at fertilization in the sea urchin egg. Dev Biol. 1977 Jul 1;58(1):185–196. doi: 10.1016/0012-1606(77)90084-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Thomas R. C. Intracellular pH of snail neurones measured with a new pH-sensitive glass mirco-electrode. J Physiol. 1974 Apr;238(1):159–180. doi: 10.1113/jphysiol.1974.sp010516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Thomas R. C. The effect of carbon dioxide on the intracellular pH and buffering power of snail neurones. J Physiol. 1976 Mar;255(3):715–735. doi: 10.1113/jphysiol.1976.sp011305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tomoda A., Tsuda-Hirota S., Minakami S. Glycolysis of red cells suspended in solutions of impermeable solutes. Intracellular pH and glycolysis. J Biochem. 1977 Mar;81(3):697–701. doi: 10.1093/oxfordjournals.jbchem.a131506. [DOI] [PubMed] [Google Scholar]
  34. Turin L., Warner A. E. Intracellular pH in early Xenopus embryos: its effect on current flow between blastomeres. J Physiol. 1980 Mar;300:489–504. doi: 10.1113/jphysiol.1980.sp013174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Winkler M. M., Grainger J. L. Mechanism of action of NH4Cl and other weak bases in the activation of sea urchin eggs. Nature. 1978 Jun 15;273(5663):536–538. doi: 10.1038/273536a0. [DOI] [PubMed] [Google Scholar]
  36. Winkler M. M., Steinhardt R. A., Grainger J. L., Minning L. Dual ionic controls for the activation of protein synthesis at fertilization. Nature. 1980 Oct 9;287(5782):558–560. doi: 10.1038/287558a0. [DOI] [PubMed] [Google Scholar]
  37. Woodland H. R. Changes in the polysome content of developing Xenopus laevis embryos. Dev Biol. 1974 Sep;40(1):90–101. doi: 10.1016/0012-1606(74)90111-0. [DOI] [PubMed] [Google Scholar]
  38. Zeuthern E., Hamburger K. Mitotic cycles in oxygen uptake and carbon dioxide output in the cleaving frog egg. Biol Bull. 1972 Dec;143(3):699–706. doi: 10.2307/1540192. [DOI] [PubMed] [Google Scholar]
  39. de Laat S. W., Buwalda R. J., Habets A. M. Intracellular ionic distribution, cell membrane permeability and membrane potential of the Xenopus egg during first cleavage. Exp Cell Res. 1974 Nov;89(1):1–14. doi: 10.1016/0014-4827(74)90180-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES