Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Nov 1;91(2):392–398. doi: 10.1083/jcb.91.2.392

Status of mitochondria in living human fibroblasts during growth and senescence in vitro: use of the laser dye rhodamine 123

PMCID: PMC2111971  PMID: 7309788

Abstract

Rhodamine 123, a fluorescent laser dye that is selectively taken up into mitochondria of living cells, was used to examine mitochondrial morphology in early-passage (young), late-passage (old), and progeric human fibroblasts. Mitochondria were readily visualized in all cell types during growth (mid-log) and confluent stages. In all cell strains at confluence, mitochondria became shorter, more randomly aligned, and developed a higher proportion of bead-like forms. Treatment of cells for six days with Tevenel, a chloramphenicol analog that inhibits mitochondrial protein synthesis, brought about a marked depletion of mitochondria and a diffuse background fluorescence. Cyanide produced a rapid release of preloaded mitochondrial fluorescence followed by detachment and killing of cells. Colcemid caused a random coiling and fragmentation of mitochondria particularly in the confluent stage. No gross differences were discernible in mitochondria of the three cell strains in mid-log and confluent states or after these treatments. Butanol-extractable fluorescence after loading with rhodamine 123 was lower in all cell strains in confluent compared to mid-log stages. At confluence all three cell strains had similar rhodamine contents at zero-time and after washout up to 24 h. At the mid-log stage, young cells contained more rhodamine initially and lost it more rapidly than old or progeria cells, in that order. The data indicate no gross derangement in the morphology or number of mitochondria in old and progeria fibroblasts but there is a reduction of protonmotive force evident in these cells at the mid-log stage that may be growth limiting.

Full Text

The Full Text of this article is available as a PDF (846.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brandes D., Murphy D. G., Anton E. B., Barnard S. Ultrastructural and cytochemical changes in cultured human lung cells. J Ultrastruct Res. 1972 Jun;39(5):465–483. doi: 10.1016/s0022-5320(72)90114-1. [DOI] [PubMed] [Google Scholar]
  2. Chávez E., Jung D. W., Brierley G. P. Energy-dependence exchange of K+ in heart mitochondria. K+ efflux. Arch Biochem Biophys. 1977 Oct;183(2):460–470. doi: 10.1016/0003-9861(77)90381-2. [DOI] [PubMed] [Google Scholar]
  3. Comings D. E., Okada T. A. Electron microscopy of human fibroblasts in tissue culture during logarithmic and confluent stages of growth. Exp Cell Res. 1970 Aug;61(2):295–301. doi: 10.1016/0014-4827(70)90451-9. [DOI] [PubMed] [Google Scholar]
  4. Cristofalo V. J., Kritchevsky D. Respiration and glycolysis in the human diploid cell strain WI-38. J Cell Physiol. 1966 Feb;67(1):125–132. doi: 10.1002/jcp.1040670114. [DOI] [PubMed] [Google Scholar]
  5. Darzynkiewicz Z., Staiano-Coico L., Melamed M. R. Increased mitochondrial uptake of rhodamine 123 during lymphocyte stimulation. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2383–2387. doi: 10.1073/pnas.78.4.2383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fillingame R. H. The proton-translocating pumps of oxidative phosphorylation. Annu Rev Biochem. 1980;49:1079–1113. doi: 10.1146/annurev.bi.49.070180.005243. [DOI] [PubMed] [Google Scholar]
  7. Freeman K. B. Inhibition of mitochondrial and bacterial protein synthesis by chloramphenicol. Can J Biochem. 1970 Apr;48(4):479–485. doi: 10.1139/o70-077. [DOI] [PubMed] [Google Scholar]
  8. Goldstein S., Littlefield J. W. Effect of insulin on the conversion of glucose-C-14 to C-14-O2 by normal and diabetic fibroblasts in culture. Diabetes. 1969 Aug;18(8):545–549. doi: 10.2337/diab.18.8.545. [DOI] [PubMed] [Google Scholar]
  9. Hackenbrock C. R. Ultrastructural bases for metabolically linked mechanical activity in mitochondria. II. Electron transport-linked ultrastructural transformations in mitochondria. J Cell Biol. 1968 May;37(2):345–369. doi: 10.1083/jcb.37.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hakami N., Pious D. A. Mitochondrial enzyme activity in "senescent" and virus-transformed human fibroblasts. Exp Cell Res. 1968 Oct;53(1):135–138. doi: 10.1016/0014-4827(68)90360-1. [DOI] [PubMed] [Google Scholar]
  11. Harley C. B., Goldstein S. Cultured human fibroblasts: distribution of cell generations and a critical limit. J Cell Physiol. 1978 Dec;97(3 Pt 2 Suppl 1):509–516. doi: 10.1002/jcp.1040970326. [DOI] [PubMed] [Google Scholar]
  12. Heggeness M. H., Simon M., Singer S. J. Association of mitochondria with microtubules in cultured cells. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3863–3866. doi: 10.1073/pnas.75.8.3863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Johnson J. E., Jr Fine structure of IMR-90 cells in culture as examined by scanning and transmission electron microscopy. Mech Ageing Dev. 1979 Jul;10(6):405–443. doi: 10.1016/0047-6374(79)90022-8. [DOI] [PubMed] [Google Scholar]
  14. Johnson L. V., Walsh M. L., Bockus B. J., Chen L. B. Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. J Cell Biol. 1981 Mar;88(3):526–535. doi: 10.1083/jcb.88.3.526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Johnson L. V., Walsh M. L., Chen L. B. Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci U S A. 1980 Feb;77(2):990–994. doi: 10.1073/pnas.77.2.990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jung D. W., Chávez E., Brierley G. P. Energy-dependent exchange of K+ in heart mitochondria. K+ influx. Arch Biochem Biophys. 1977 Oct;183(2):452–459. doi: 10.1016/0003-9861(77)90380-0. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Lipetz J., Cristofalo V. J. Ultrastructural changes accompanying the aging of human diploid cells in culture. J Ultrastruct Res. 1972 Apr;39(1):43–56. doi: 10.1016/s0022-5320(72)80005-4. [DOI] [PubMed] [Google Scholar]
  19. Maciera-Coelho A., Garcia-Giralt E., Adrian M. Changes in lysosomal associated structures in human fibroblasts kept in resting phase. Proc Soc Exp Biol Med. 1971 Nov;138(2):712–718. doi: 10.3181/00379727-138-35974. [DOI] [PubMed] [Google Scholar]
  20. PACKER L. SIZE AND SHAPE TRANSFORMATIONS CORRELATED WITH OXIDATIVE PHOSPHORYLATION IN MITOCHONDRIA. I. SWELLING-SHRINKAGE MECHANISMS IN INTACT MITOCHONDRIA. J Cell Biol. 1963 Sep;18:487–494. doi: 10.1083/jcb.18.3.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. ROUILLER C. Physiological and pathological changes in mitochondrial morphology. Int Rev Cytol. 1960;9:227–292. doi: 10.1016/s0074-7696(08)62748-5. [DOI] [PubMed] [Google Scholar]
  22. Rosenbaum R. M., Wittner M., Lenger M. Mitochondrial and other ultrastructural changes in great alveolar cells of oxygen-adapted and poisoned rats. Lab Invest. 1969 Jun;20(6):516–528. [PubMed] [Google Scholar]
  23. Slater E. C. Mechanism of oxidative phosphorylation. Annu Rev Biochem. 1977;46:1015–1026. doi: 10.1146/annurev.bi.46.070177.005055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Smith D. S., Järlfors U., Cameron B. F. Morphological evidence for the participation of microtubules in axonal transport. Ann N Y Acad Sci. 1975 Jun 30;253:472–506. doi: 10.1111/j.1749-6632.1975.tb19223.x. [DOI] [PubMed] [Google Scholar]
  25. Smith D. S., Järlfors U., Cayer M. L. Structural cross-bridges between microtubules and mitochondria in central axons of an insect (Periplaneta americana). J Cell Sci. 1977;27:255–272. doi: 10.1242/jcs.27.1.255. [DOI] [PubMed] [Google Scholar]
  26. Villee D. B., Nichols G., Jr, Talbot N. B. Metabolic studies in two boys with classical progeria. Pediatrics. 1969 Feb;43(2):207–216. [PubMed] [Google Scholar]
  27. Wang E., Goldman R. D. Functions of cytoplasmic fibers in intracellular movements in BHK-21 cells. J Cell Biol. 1978 Dec;79(3):708–726. doi: 10.1083/jcb.79.3.708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Weakley B. S. Variations in mitochondrial size and ultrastructure during germ cell development. Cell Tissue Res. 1976 Jul 6;169(4):531–550. doi: 10.1007/BF00218151. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES