Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Nov 1;91(2):589–594. doi: 10.1083/jcb.91.2.589

Distribution of microtubule organizing centers in migrating sheets of endothelial cells

PMCID: PMC2111976  PMID: 7309800

Abstract

This study was designed to investigate the relationship between the position of the microtubule organizing center (MTOC) and the direction of migration of a sheet of endothelial cells (EC). Using immunofluorescence and phase microscopy the MTOC's of migrating EC were visualized as the cells moved into an in vitro experimental wound produced by mechanical denudation of part of a confluent monolayer culture. Although the MTOC's in nonmigrating EC were randomly positioned in relation to the nucleus, in migrating cells the position of the MTOC's changed so that 80% of the cells had the MTOC positioned in front of the nucleus toward the direction of movement of the endothelial sheet. This repositioning of the MTOC occurred within the first 4 h after wounding and was associated with the beginning of migration of EC's into the wounded area as seen by time-lapse cinemicrophotography. These studies focus attention on the MTOC as a cytoskeletal structure that may play a role in determining the direction of cell movement.

Full Text

The Full Text of this article is available as a PDF (665.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albrecht-Buehler G. Phagokinetic tracks of 3T3 cells: parallels between the orientation of track segments and of cellular structures which contain actin or tubulin. Cell. 1977 Oct;12(2):333–339. doi: 10.1016/0092-8674(77)90109-x. [DOI] [PubMed] [Google Scholar]
  2. Badley R. A., Couchman J. R., Rees D. A. Comparison of the cell cytoskeleton in migratory and stationary chick fibroblasts. J Muscle Res Cell Motil. 1980 Mar;1(1):5–14. doi: 10.1007/BF00711922. [DOI] [PubMed] [Google Scholar]
  3. Bhisey A. N., Freed J. J. Ameboid movement induced in cultured macrophages by colchicine or vinblastine. Exp Cell Res. 1971 Feb;64(2):419–429. doi: 10.1016/0014-4827(71)90096-6. [DOI] [PubMed] [Google Scholar]
  4. Cheung H. T., Cantarow W. D., Sundharadas G. Colchicine and cytochalasin B (CB) effects on random movement, spreading and adhesion of mouse macrophages. Exp Cell Res. 1978 Jan;111(1):95–103. doi: 10.1016/0014-4827(78)90240-9. [DOI] [PubMed] [Google Scholar]
  5. Connolly J. A., Kalnins V. I., Cleveland D. W., Kirschner M. W. Immunoflourescent staining of cytoplasmic and spindle microtubules in mouse fibroblasts with antibody to tau protein. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2437–2440. doi: 10.1073/pnas.74.6.2437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Connolly J. A., Kalnins V. I., Cleveland D. W., Kirschner M. W. Intracellular localization of the high molecular weight microtubule accessory protein by indirect immunofluorescence. J Cell Biol. 1978 Mar;76(3):781–786. doi: 10.1083/jcb.76.3.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Couchman J. R., Rees D. A. The behaviour of fibroblasts migrating from chick heart explants: changes in adhesion, locomotion and growth, and in the distribution of actomyosin and fibronectin. J Cell Sci. 1979 Oct;39:149–165. doi: 10.1242/jcs.39.1.149. [DOI] [PubMed] [Google Scholar]
  8. Frankel F. R. Organization and energy-dependent growth of microtubules in cells. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2798–2802. doi: 10.1073/pnas.73.8.2798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gail M. H., Boone C. W. Effect of colcemid on fibroblast motility. Exp Cell Res. 1971 Mar;65(1):221–227. doi: 10.1016/s0014-4827(71)80070-8. [DOI] [PubMed] [Google Scholar]
  10. Goldman R. D. The role of three cytoplasmic fibers in BHK-21 cell motility. I. Microtubules and the effects of colchicine. J Cell Biol. 1971 Dec;51(3):752–762. doi: 10.1083/jcb.51.3.752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gotlieb A. I., Heggeness M. H., Ash J. F., Singer S. J. Mechanochemical proteins, cell motility and cell-cell contacts: the localization of mechanochemical proteins inside cultured cells at the edge of an in vitro "wound". J Cell Physiol. 1979 Sep;100(3):563–578. doi: 10.1002/jcp.1041000318. [DOI] [PubMed] [Google Scholar]
  12. Gotlieb A. I., Spector W. Migration into an in vitro experimental wound: a comparison of porcine aortic endothelial and smooth muscle cells and the effect of culture irradiation. Am J Pathol. 1981 May;103(2):271–282. [PMC free article] [PubMed] [Google Scholar]
  13. Gould R. R., Borisy G. G. The pericentriolar material in Chinese hamster ovary cells nucleates microtubule formation. J Cell Biol. 1977 Jun;73(3):601–615. doi: 10.1083/jcb.73.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Haudenschild C. C., Cotran R. S., Gimbrone M. A., Jr, Folkman J. Fine structure of vascular endothelium in culture. J Ultrastruct Res. 1975 Jan;50(1):22–32. doi: 10.1016/s0022-5320(75)90004-0. [DOI] [PubMed] [Google Scholar]
  15. Heidemann S. R., Zieve G. W., McIntosh J. R. Evidence for microtubule subunit addition to the distal end of mitotic structures in vitro. J Cell Biol. 1980 Oct;87(1):152–159. doi: 10.1083/jcb.87.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kirschner M. W. Microtubule assembly and nucleation. Int Rev Cytol. 1978;54:1–71. doi: 10.1016/s0074-7696(08)60164-3. [DOI] [PubMed] [Google Scholar]
  17. Malech H. L., Root R. K., Gallin J. I. Structural analysis of human neutrophil migration. Centriole, microtubule, and microfilament orientation and function during chemotaxis. J Cell Biol. 1977 Dec;75(3):666–693. doi: 10.1083/jcb.75.3.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McGill M., Brinkley B. R. Human chromosomes and centrioles as nucleating sites for the in vitro assembly of microtubules from bovine brain tubulin. J Cell Biol. 1975 Oct;67(1):189–199. doi: 10.1083/jcb.67.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Osborn M., Weber K. Cytoplasmic microtubules in tissue culture cells appear to grow from an organizing structure towards the plasma membrane. Proc Natl Acad Sci U S A. 1976 Mar;73(3):867–871. doi: 10.1073/pnas.73.3.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pepper D. A., Brinkley B. R. Microtubule initiation at kinetochores and centrosomes in lysed mitotic cells. Inhibition of site-specific nucleation by tubulin antibody. J Cell Biol. 1979 Aug;82(2):585–591. doi: 10.1083/jcb.82.2.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Raff E. C. The control of microtubule assembly in vivo. Int Rev Cytol. 1979;59:1–96. doi: 10.1016/s0074-7696(08)61660-5. [DOI] [PubMed] [Google Scholar]
  22. Robbins E., Jentzsch G., Micali A. The centriole cycle in synchronized HeLa cells. J Cell Biol. 1968 Feb;36(2):329–339. doi: 10.1083/jcb.36.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Spiegelman B. M., Lopata M. A., Kirschner M. W. Multiple sites for the initiation of microtubule assembly in mammalian cells. Cell. 1979 Feb;16(2):239–252. doi: 10.1016/0092-8674(79)90002-3. [DOI] [PubMed] [Google Scholar]
  24. Spooner B. S., Yamada K. M., Wessells N. K. Microfilaments and cell locomotion. J Cell Biol. 1971 Jun;49(3):595–613. doi: 10.1083/jcb.49.3.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Starger J. M., Brown W. E., Goldman A. E., Goldman R. D. Biochemical and immunological analysis of rapidly purified 10-nm filaments from baby hamster kidney (BHK-21) cells. J Cell Biol. 1978 Jul;78(1):93–109. doi: 10.1083/jcb.78.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stearns M. E., Connolly J. A., Brown D. L. Cytoplasmic microtubule organizing centers isolated from Polytomella agilis. Science. 1976 Jan 16;191(4223):188–191. doi: 10.1126/science.1246607. [DOI] [PubMed] [Google Scholar]
  27. Tilney L. G., Goddard J. Nucleated sites for the assembly of cytoplasmic microtubules in the ectodermal cells of blastulae of Arbacia punctulata. J Cell Biol. 1970 Sep;46(3):564–575. doi: 10.1083/jcb.46.3.564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wehland J., Osborn M., Weber K. Phalloidin-induced actin polymerization in the cytoplasm of cultured cells interferes with cell locomotion and growth. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5613–5617. doi: 10.1073/pnas.74.12.5613. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES