Abstract
The nonhistone chromosomal proteins, HMG1 and HMG2, were iodinated and introduced into HeLa cells, bovine fibroblasts, or mouse 3T3 cells by erythrocyte-mediated microinjection. Autoradiographic analysis of injected cells fixed with glutaraldehyde consistently showed both molecules concentrated within nuclei. Fixation with methanol, on the other hand, resulted in some leakage of the microinjected proteins from the nuclei so that more autoradiographic grains appeared over the cytoplasm or outside the cells. Both injected and endogenous HMG1 and HMG2 partitioned unexpectedly upon fractionation of bovine fibroblasts, HeLa, or 3T3 cells, appearing in the cytoplasmic fractions. However, in calf thymus, HMG1 and HMG2 molecules appeared in the 0.35 M NaCl extract of isolated nuclei, as expected. These observations show that the binding of HMG1 and HMG2 to chromatin differs among cell types or that other tissue-specific components can influence their binding. Coinjection of [125I]HMG1 and [131I]HMG2 into HeLa cells revealed that the two molecules display virtually equivalent distributions upon cell fractionation, identical stability, identical intracellular distributions, and equal rates of equilibration between nuclei. In addition, HMG1 and HMG2 did not differ in their partitioning upon fractionation nor in their stability in growing vs. nongrowing 3T3 cells. Thus, we have not detected any significant differences in the intracellular behavior of HMG1 and HMG2 after microinjection into human, bovine, or murine cells.
Full Text
The Full Text of this article is available as a PDF (993.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker C., Isenberg I., Goodwin G. H., Johns E. W. Physical studies of the nonhistone chromosomal proteins HMG-U and HMG-2. Biochemistry. 1976 Apr 20;15(8):1645–1649. doi: 10.1021/bi00653a009. [DOI] [PubMed] [Google Scholar]
- Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
- Bonner W. M. Protein migration into nuclei. I. Frog oocyte nuclei in vivo accumulate microinjected histones, allow entry to small proteins, and exclude large proteins. J Cell Biol. 1975 Feb;64(2):421–430. doi: 10.1083/jcb.64.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonner W. M. Protein migration into nuclei. II. Frog oocyte nuclei accumulate a class of microinjected oocyte nuclear proteins and exclude a class of microinjected oocyte cytoplasmic proteins. J Cell Biol. 1975 Feb;64(2):431–437. doi: 10.1083/jcb.64.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bustin M., Hopkins R. B., Isenberg I. Immunological relatedness of high mobility group chromosomal proteins from calf thymus. J Biol Chem. 1978 Mar 10;253(5):1694–1699. [PubMed] [Google Scholar]
- Bustin M., Neihart N. K. Antibodies against chromosomal HMG proteins stain the cytoplasm of mammalian cells. Cell. 1979 Jan;16(1):181–189. doi: 10.1016/0092-8674(79)90199-5. [DOI] [PubMed] [Google Scholar]
- Capecchi M. R., Capecchi N. E., Hughes S. H., Wahl G. M. Selective degradation of abnormal proteins in mammalian tissue culture cells. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4732–4736. doi: 10.1073/pnas.71.12.4732. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cary P. D., Crane-Robinson C., Bradbury E. M., Javaherian K., Goodwin G. H., Johns E. W. Conformational studies of two non-histone chromosomal proteins and their interactions with DNA. Eur J Biochem. 1976 Mar 1;62(3):583–590. doi: 10.1111/j.1432-1033.1976.tb10193.x. [DOI] [PubMed] [Google Scholar]
- Cary P. D., Shooter K. V., Goodwin G. H., Johns E. W., Olayemi J. Y., Hartman P. G., Bradbury E. M. Does high-mobility-group non-histone protein HMG 1 interact specifically with histone H1 subfractions? Biochem J. 1979 Dec 1;183(3):657–662. doi: 10.1042/bj1830657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Comings D. E., Harris D. C. Nuclear proteins. II. Similarity of nonhistone proteins in nuclear sap and chromatin, and essential absence of contractile proteins from mouse liver nuclei. J Cell Biol. 1976 Aug;70(2 Pt 1):440–452. doi: 10.1083/jcb.70.2.440. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Robertis E. M., Longthorne R. F., Gurdon J. B. Intracellular migration of nuclear proteins in Xenopus oocytes. Nature. 1978 Mar 16;272(5650):254–256. doi: 10.1038/272254a0. [DOI] [PubMed] [Google Scholar]
- EAGLE H., PIEZ K. A., FLEISCHMAN R., OYAMA V. I. Protein turnover in mammaliar cell cultures. J Biol Chem. 1959 Mar;234(3):592–597. [PubMed] [Google Scholar]
- Foster D. N., Gurney T., Jr Nuclear location of mammalian DNA polymerase activities. J Biol Chem. 1976 Dec 25;251(24):7893–7898. [PubMed] [Google Scholar]
- Goldberg A. L., Dice J. F. Intracellular protein degradation in mammalian and bacterial cells. Annu Rev Biochem. 1974;43(0):835–869. doi: 10.1146/annurev.bi.43.070174.004155. [DOI] [PubMed] [Google Scholar]
- Goldberg A. L., St John A. C. Intracellular protein degradation in mammalian and bacterial cells: Part 2. Annu Rev Biochem. 1976;45:747–803. doi: 10.1146/annurev.bi.45.070176.003531. [DOI] [PubMed] [Google Scholar]
- Goodwin G. H., Johns E. W. Are the high mobility group non-histone chromosomal proteins associated with 'active' chromatin? Biochim Biophys Acta. 1978 Jun 22;519(1):279–284. doi: 10.1016/0005-2787(78)90081-3. [DOI] [PubMed] [Google Scholar]
- Goodwin G. H., Nicolas R. H., Johns E. W. An improved large scale fractionation of high mobility group non-histone chromatin proteins. Biochim Biophys Acta. 1975 Oct 20;405(2):280–291. doi: 10.1016/0005-2795(75)90094-x. [DOI] [PubMed] [Google Scholar]
- Goodwin G. H., Woodhead L., Johns E. W. The presence of high mobility group non-histone chromatin proteins in isolated nucleosomes. FEBS Lett. 1977 Jan 15;73(1):85–88. [PubMed] [Google Scholar]
- Gordon J. S., Bruno J., Lucas J. J. Heterogeneous binding of high mobility group chromosomal proteins to nuclei. J Cell Biol. 1981 Feb;88(2):373–379. doi: 10.1083/jcb.88.2.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gurdon J. B. Nuclear transplantation and the control of gene activity in animal development. Proc R Soc Lond B Biol Sci. 1970 Dec 1;176(1044):303–314. doi: 10.1098/rspb.1970.0050. [DOI] [PubMed] [Google Scholar]
- Gurney T., Jr, Foster D. N. Nonaqueous isolation of nuclei from cultured cells. Methods Cell Biol. 1977;16:45–68. doi: 10.1016/s0091-679x(08)60091-6. [DOI] [PubMed] [Google Scholar]
- Hancock R. Conservation of histones in chromatin during growth and mitosis in vitro. J Mol Biol. 1969 Mar 28;40(3):457–466. doi: 10.1016/0022-2836(69)90165-x. [DOI] [PubMed] [Google Scholar]
- Hendil K. B. Degradation of abnormal proteins in HeLa cells. J Cell Physiol. 1976 Mar;87(3):289–296. doi: 10.1002/jcp.1040870304. [DOI] [PubMed] [Google Scholar]
- Javaherian K., Liu J. F., Wang J. C. Nonhistone proteins HMG1 and HMG2 change the DNA helical structure. Science. 1978 Mar 24;199(4335):1345–1346. doi: 10.1126/science.628842. [DOI] [PubMed] [Google Scholar]
- Knowles S. E., Gunn J. M., Hanson R. W., Ballard F. J. Increased degradation rates of protein synthesized in hepatoma cells in the presence of amino acid analogues. Biochem J. 1975 Mar;146(3):595–600. doi: 10.1042/bj1460595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuehl L., Lyness T., Dixon G. H., Levy-Wilson B. Distribution of high mobility group proteins among domains of trout testis chromatin differing in their susceptibility to micrococcal nuclease. J Biol Chem. 1980 Feb 10;255(3):1090–1095. [PubMed] [Google Scholar]
- Kuehl L., Lyness T., Watson D. C., Dixon G. H. Binding of HMG-T to trout testis chromatin. Biochem Biophys Res Commun. 1979 Sep 27;90(2):391–397. doi: 10.1016/0006-291x(79)91247-6. [DOI] [PubMed] [Google Scholar]
- Kuehl L. Synthesis of high mobility group proteins in regenerating rat liver. J Biol Chem. 1979 Aug 10;254(15):7276–7281. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Levy-Wilson B., Kuehl L., Dixon G. H. The release of high mobility group protein H6 and protamine gene sequences upon selective DNase I degradation of trout testis chromatin. Nucleic Acids Res. 1980 Jul 11;8(13):2859–2869. doi: 10.1093/nar/8.13.2859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levy B. W., Connor W., Dixon G. H. A subset of trout testis nucleosomes enriched in transcribed DNA sequences contains high mobility group proteins as major structural components. J Biol Chem. 1979 Feb 10;254(3):609–620. [PubMed] [Google Scholar]
- Manser T., Thacher T., Rechsteiner M. Arginine-rich histones do not exchange between human and mouse chromosomes in hybrid cells. Cell. 1980 Apr;19(4):993–1003. doi: 10.1016/0092-8674(80)90090-2. [DOI] [PubMed] [Google Scholar]
- Miyachi Y., Vaitukaitis J. L., Nieschlag E., Lipsett M. B. Enzymatic radioiodination of gonadotropins. J Clin Endocrinol Metab. 1972 Jan;34(1):23–28. doi: 10.1210/jcem-34-1-23. [DOI] [PubMed] [Google Scholar]
- Panyim S., Chalkley R. High resolution acrylamide gel electrophoresis of histones. Arch Biochem Biophys. 1969 Mar;130(1):337–346. doi: 10.1016/0003-9861(69)90042-3. [DOI] [PubMed] [Google Scholar]
- Penman S. RNA metabolism in the HeLa cell nucleus. J Mol Biol. 1966 May;17(1):117–130. doi: 10.1016/s0022-2836(66)80098-0. [DOI] [PubMed] [Google Scholar]
- Peters E. H., Levy-Wilson B., Dixon G. H. Evidence for the location of high mobility group protein T in the internucleosomal linker regions of trout testis chromatin. J Biol Chem. 1979 May 10;254(9):3358–3361. [PubMed] [Google Scholar]
- RYSER H. J. COMPARISON OF THE INCORPORATION OF TYROSINE AND ITS IODINATED ANALOGS INTO THE PROTEINS OF EHRLICH ASCITES TUMOR CELLS AND RAT-LIVER SLICES. Biochim Biophys Acta. 1963 Dec 13;78:759–762. doi: 10.1016/0006-3002(63)91051-5. [DOI] [PubMed] [Google Scholar]
- Rechsteiner M., Kuehl L. Microinjection of the nonhistone chromosomal protein HMG1 into bovine fibroblasts and HeLa cells. Cell. 1979 Apr;16(4):901–908. doi: 10.1016/0092-8674(79)90105-3. [DOI] [PubMed] [Google Scholar]
- Rechsteiner M., Lund K., Hillyard D., Olivera B. Autoradiographic studies of pyridine nucleotide metabolism in human culture cells. J Cell Physiol. 1974 Jun;83(3):389–400. doi: 10.1002/jcp.1040830309. [DOI] [PubMed] [Google Scholar]
- Rechsteiner M. Red cell-mediated microinjection. Natl Cancer Inst Monogr. 1978 May;(48):57–64. [PubMed] [Google Scholar]
- Riley D., Weintraub H. Conservative segregation of parental histones during replication in the presence of cycloheximide. Proc Natl Acad Sci U S A. 1979 Jan;76(1):328–332. doi: 10.1073/pnas.76.1.328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlegel R. A., Rechsteiner M. C. Microinjection of thymidine kinase and bovine serum albumin into mammalian cells by fusion with red blood cells. Cell. 1975 Aug;5(4):371–379. doi: 10.1016/0092-8674(75)90056-2. [DOI] [PubMed] [Google Scholar]
- Seyedin S. M., Kistler W. S. Levels of chromosomal protein high mobility group 2 parallel the proliferative activity of testis, skeletal muscle, and other organs. J Biol Chem. 1979 Nov 25;254(22):11264–11271. [PubMed] [Google Scholar]
- Shooter K. V., Goodwin G. H., Johns E. W. Interactions of a purified non-histone chromosomal protein with DNA and histone. Eur J Biochem. 1974 Sep 1;47(2):263–270. doi: 10.1111/j.1432-1033.1974.tb03690.x. [DOI] [PubMed] [Google Scholar]
- Smerdon M. J., Isenberg I. Interactions between the subfractons of calf thymus H1 and nonhistone chromosomal proteins HMG1 and HMG2. Biochemistry. 1976 Sep 21;15(19):4242–4247. doi: 10.1021/bi00664a017. [DOI] [PubMed] [Google Scholar]
- Smith B. J., Robertson D., Birbeck M. S., Goodwin G. H., Johns E. W. Immunochemical studies of high mobility group non-histone chromatin proteins HMG 1 and HMG 2. Exp Cell Res. 1978 Sep;115(2):420–423. doi: 10.1016/0014-4827(78)90298-7. [DOI] [PubMed] [Google Scholar]
- Vidali G., Boffa L. C., Allfrey V. G. Selective release of chromosomal proteins during limited DNAase 1 digestion of avian erythrocyte chromatin. Cell. 1977 Oct;12(2):409–415. doi: 10.1016/0092-8674(77)90117-9. [DOI] [PubMed] [Google Scholar]
- Walker J. M., Gooderham K., Johns E. W. The isolation, characterization and partial sequence of a peptide rich in glutamic acid and aspartic acid (HGA-2 peptide) from calf thymus non-histone chromosomal protein HMG 2. Comparison with a similar peptide (HGA-1 peptide) from calf thymus non-histone chromosomal protein HMG 1. Biochem J. 1979 Apr 1;179(1):253–255. doi: 10.1042/bj1790253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker J. M., Goodwin G. H., Johns E. W. The primary structure of the nucleosome-associated chromosomal protein HMG 14. FEBS Lett. 1979 Apr 15;100(2):394–398. doi: 10.1016/0014-5793(79)80378-6. [DOI] [PubMed] [Google Scholar]
- Walker J. M., Goodwin G. H., Johns E. W. The similarity between the primary structures of two non-histone chromosomal proteins. Eur J Biochem. 1976 Mar 1;62(3):461–469. doi: 10.1111/j.1432-1033.1976.tb10179.x. [DOI] [PubMed] [Google Scholar]
- Walker J. M., Goodwin G. H., Johns E. W., Wietzes P., Gaastra W. A comparison of the amino-terminal sequences of two calf-thymus chromatin non-histone proteins. Int J Pept Protein Res. 1977;9(3):220–223. doi: 10.1111/j.1399-3011.1977.tb03484.x. [DOI] [PubMed] [Google Scholar]
- Walker J. M., Hastings J. R., Johns E. W. A novel continuous sequence of 41 aspartic and glutamic residues in a non-histone chromosomal protein. Nature. 1978 Jan 19;271(5642):281–282. doi: 10.1038/271281a0. [DOI] [PubMed] [Google Scholar]
- Walker J. M., Hastings J. R., Johns E. W. The primary structure of a non-histone chromosomal protein. Eur J Biochem. 1977 Jun 15;76(2):461–468. doi: 10.1111/j.1432-1033.1977.tb11616.x. [DOI] [PubMed] [Google Scholar]
- Weintraub H., Groudine M. Chromosomal subunits in active genes have an altered conformation. Science. 1976 Sep 3;193(4256):848–856. doi: 10.1126/science.948749. [DOI] [PubMed] [Google Scholar]
- Weisbrod S., Groudine M., Weintraub H. Interaction of HMG 14 and 17 with actively transcribed genes. Cell. 1980 Jan;19(1):289–301. doi: 10.1016/0092-8674(80)90410-9. [DOI] [PubMed] [Google Scholar]
- Weisbrod S., Weintraub H. Isolation of a subclass of nuclear proteins responsible for conferring a DNase I-sensitive structure on globin chromatin. Proc Natl Acad Sci U S A. 1979 Feb;76(2):630–634. doi: 10.1073/pnas.76.2.630. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamaizumi M., Uchida T., Okada Y., Furusawa M., Mitsui H. Rapid transfer of non-histone chromosomal proteins to the nucleus of living cells. Nature. 1978 Jun 29;273(5665):782–784. doi: 10.1038/273782a0. [DOI] [PubMed] [Google Scholar]
- Yu S. H., Spring T. G. The interaction of nonhistone chromosomal proteins HMG1 and HMG2 with subfractions of H1 histone immobilized on agarose. Biochim Biophys Acta. 1977 May 27;492(1):20–28. doi: 10.1016/0005-2795(77)90210-0. [DOI] [PubMed] [Google Scholar]
- Zavortink M., Thacher T., Rechsteiner M. Degradation of proteins microinjected into cultured mammalian cells. J Cell Physiol. 1979 Jul;100(1):175–185. doi: 10.1002/jcp.1041000118. [DOI] [PubMed] [Google Scholar]