Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Jan 1;92(1):121–131. doi: 10.1083/jcb.92.1.121

Caenorhabditis elegans spermatozoan locomotion: amoeboid movement with almost no actin

PMCID: PMC2111997  PMID: 7199049

Abstract

The pseudopods of Caenorhabditis elegans spermatozoa move actively causing some cells to translocate when the sperm are dissected into a low osmotic strength buffered salts solution. On time-lapse video tapes, pseudopodial projections can be seen moving at 20-45 micrometers/min from the tip to the base of the pseudopod. This movement occurs whether or not the cell is attached to a substrate. Translocation of the cell is dependent on the substrate. Some spermatozoa translocate on acid-washed glass, but a better substrate is prepared by drying an extract of Ascaris uteri (the normal site of nematode sperm motility) onto glass slides. On this substrate more than half the spermatozoa translocate at a velocity (21 micrometers/min) similar to that observed in vivo. Translocating cells attach to the substrate by their pseudopodial projections. They always move toward the pseudopod; changes in direction are caused by changes in pseudopod shape that determine points of detachment and reattachment of the cell to the substrate. Actin comprises less than 0.02% of the proteins in sperm, and myosin is undetectable. No microfilaments are found in the sperm. Immunohistochemistry shows that some actin is localized in patches in the pseudopod. The movement of spermatozoa is unaffected by cytochalasins, however, so there is no evidence that actin participates in locomotion. Fertilization-defective mutants in genes fer-2, fer-4, and fer-6 produce spermatozoa with defective pseudopodial projections, and these spermatozoa are largely immotile. Mutants in the spermatozoa do not translocate. Thus pseudopod movement is correlated with the presence of normal projections. Twelve mutants with defective muscles have spermatozoa with normal movement, so these genes do not specify products needed for both muscle and nonmuscle cell motility.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abercrombie M., Heaysman J. E., Pegrum S. M. The locomotion of fibroblasts in culture. I. Movements of the leading edge. Exp Cell Res. 1970 Mar;59(3):393–398. doi: 10.1016/0014-4827(70)90646-4. [DOI] [PubMed] [Google Scholar]
  2. Anya A. O. Physiological aspects of reproduction in nematodes. Adv Parasitol. 1976;14:267–351. doi: 10.1016/s0065-308x(08)60516-3. [DOI] [PubMed] [Google Scholar]
  3. Argon Y., Ward S. Caenorhabditis elegans fertilization-defective mutants with abnormal sperm. Genetics. 1980 Oct;96(2):413–433. doi: 10.1093/genetics/96.2.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bleil J. D., Wassarman P. M. Structure and function of the zona pellucida: identification and characterization of the proteins of the mouse oocyte's zona pellucida. Dev Biol. 1980 Apr;76(1):185–202. doi: 10.1016/0012-1606(80)90371-1. [DOI] [PubMed] [Google Scholar]
  5. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown S. S., Spudich J. A. Cytochalasin inhibits the rate of elongation of actin filament fragments. J Cell Biol. 1979 Dec;83(3):657–662. doi: 10.1083/jcb.83.3.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clarke M., Schatten G., Mazia D., Spudich J. A. Visualization of actin fibers associated with the cell membrane in amoebae of Dictyostelium discoideum. Proc Natl Acad Sci U S A. 1975 May;72(5):1758–1762. doi: 10.1073/pnas.72.5.1758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  9. Epstein H. F., Waterston R. H., Brenner S. A mutant affecting the heavy chain of myosin in Caenorhabditis elegans. J Mol Biol. 1974 Dec 5;90(2):291–300. doi: 10.1016/0022-2836(74)90374-x. [DOI] [PubMed] [Google Scholar]
  10. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  11. Herman I. M., Pollard T. D. Comparison of purified anti-actin and fluorescent-heavy meromyosin staining patterns in dividing cells. J Cell Biol. 1979 Mar;80(3):509–520. doi: 10.1083/jcb.80.3.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hirsh D., Vanderslice R. Temperature-sensitive developmental mutants of Caenorhabditis elegans. Dev Biol. 1976 Mar;49(1):220–235. doi: 10.1016/0012-1606(76)90268-2. [DOI] [PubMed] [Google Scholar]
  13. Hodgkin J., Horvitz H. R., Brenner S. Nondisjunction Mutants of the Nematode CAENORHABDITIS ELEGANS. Genetics. 1979 Jan;91(1):67–94. doi: 10.1093/genetics/91.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Horovitch S. J., Storti R. V., Rich A., Pardue M. L. Multiple actins in Drosophila melanogaster. J Cell Biol. 1979 Jul;82(1):86–92. doi: 10.1083/jcb.82.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ingram V. M. A side view of moving fibroblasts. Nature. 1969 May 17;222(5194):641–644. doi: 10.1038/222641a0. [DOI] [PubMed] [Google Scholar]
  16. Kuczmarski E. R., Rosenbaum J. L. Studies on the organization and localization of actin and myosin in neurons. J Cell Biol. 1979 Feb;80(2):356–371. doi: 10.1083/jcb.80.2.356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Laufer J. S., Bazzicalupo P., Wood W. B. Segregation of developmental potential in early embryos of Caenorhabditis elegans. Cell. 1980 Mar;19(3):569–577. doi: 10.1016/s0092-8674(80)80033-x. [DOI] [PubMed] [Google Scholar]
  19. Lin D. C., Lin S. High affinity binding of [3H]dihydrocytochalasin B to peripheral membrane proteins related to the control of cell shape in the human red cell. J Biol Chem. 1978 Mar 10;253(5):1415–1419. [PubMed] [Google Scholar]
  20. Lin D. C., Tobin K. D., Grumet M., Lin S. Cytochalasins inhibit nuclei-induced actin polymerization by blocking filament elongation. J Cell Biol. 1980 Feb;84(2):455–460. doi: 10.1083/jcb.84.2.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lin S., Lin D. C., Flanagan M. D. Specificity of the effects of cytochalasin B on transport and motile processes. Proc Natl Acad Sci U S A. 1978 Jan;75(1):329–333. doi: 10.1073/pnas.75.1.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Maupin-Szamier P., Pollard T. D. Actin filament destruction by osmium tetroxide. J Cell Biol. 1978 Jun;77(3):837–852. doi: 10.1083/jcb.77.3.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nelson G. A., Ward S. Amoeboid motility and actin in Ascaris lumbricoides sperm. Exp Cell Res. 1981 Jan;131(1):149–160. doi: 10.1016/0014-4827(81)90415-8. [DOI] [PubMed] [Google Scholar]
  24. Nelson G. A., Ward S. Vesicle fusion, pseudopod extension and amoeboid motility are induced in nematode spermatids by the ionophore monensin. Cell. 1980 Feb;19(2):457–464. doi: 10.1016/0092-8674(80)90520-6. [DOI] [PubMed] [Google Scholar]
  25. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  26. Oakley B. R., Kirsch D. R., Morris N. R. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal Biochem. 1980 Jul 1;105(2):361–363. doi: 10.1016/0003-2697(80)90470-4. [DOI] [PubMed] [Google Scholar]
  27. Phillipson R. F. Reproduction of Nippostrongylus brasiliensis in the rat intestine. Parasitology. 1969 Aug;59(3):961–971. [PubMed] [Google Scholar]
  28. Pollard T. D., Weihing R. R. Actin and myosin and cell movement. CRC Crit Rev Biochem. 1974 Jan;2(1):1–65. doi: 10.3109/10409237409105443. [DOI] [PubMed] [Google Scholar]
  29. Prentki M., Chaponnier C., Jeanrenaud B., Gabbiani G. Actin microfilaments, cell shape, and secretory processes in isolated rat hepatocytes. Effect of phalloidin and cytochalasin D. J Cell Biol. 1979 Jun;81(3):592–607. doi: 10.1083/jcb.81.3.592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ramsey W. S., Harris A. Leucocyte locomotion and its inhibition by antimitotic drugs. Exp Cell Res. 1973 Dec;82(2):262–270. doi: 10.1016/0014-4827(73)90340-6. [DOI] [PubMed] [Google Scholar]
  31. Ramsey W. S. Locomotion of human polymorphonuclear leucocytes. Exp Cell Res. 1972 Jun;72(2):489–501. doi: 10.1016/0014-4827(72)90019-5. [DOI] [PubMed] [Google Scholar]
  32. Roberts T. M., Ward S. Centripetal flow of pseudopodial surface components could propel the amoeboid movement of Caenorhabditis elegans spermatozoa. J Cell Biol. 1982 Jan;92(1):132–138. doi: 10.1083/jcb.92.1.132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Roberts T. M., Ward S. Membrane flow during nematode spermiogenesis. J Cell Biol. 1982 Jan;92(1):113–120. doi: 10.1083/jcb.92.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. SAMUEL E. W. Orientation and rate of locomotion of individual amebas in the life cycle of the cellular slime mold Dictyostelium mucoroides. Dev Biol. 1961 Jun;3:317–335. doi: 10.1016/0012-1606(61)90050-1. [DOI] [PubMed] [Google Scholar]
  35. Schachat F. H., Harris H. E., Epstein H. F. Actin from the nematode, Caenorhabditis elegans, is a single electrofocusing species. Biochim Biophys Acta. 1977 Aug 23;493(2):304–309. doi: 10.1016/0005-2795(77)90186-6. [DOI] [PubMed] [Google Scholar]
  36. Schachat F., Garcea R. L., Epstein H. F. Myosins exist as homodimers of heavy chains: demonstration with specific antibody purified by nematode mutant myosin affinity chromatography. Cell. 1978 Oct;15(2):405–411. doi: 10.1016/0092-8674(78)90009-0. [DOI] [PubMed] [Google Scholar]
  37. Schloss J. A., Milsted A., Goldman R. D. Myosin subfragment binding for the localization of actin-like microfilaments in cultured cells. A light and electron microscope study. J Cell Biol. 1977 Sep;74(3):794–815. doi: 10.1083/jcb.74.3.794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Spooner B. S., Yamada K. M., Wessells N. K. Microfilaments and cell locomotion. J Cell Biol. 1971 Jun;49(3):595–613. doi: 10.1083/jcb.49.3.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  40. Sulston J. E., Brenner S. The DNA of Caenorhabditis elegans. Genetics. 1974 May;77(1):95–104. doi: 10.1093/genetics/77.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Swanstrom R., Shank P. R. X-Ray Intensifying Screens Greatly Enhance the Detection by Autoradiography of the Radioactive Isotopes 32P and 125I. Anal Biochem. 1978 May;86(1):184–192. doi: 10.1016/0003-2697(78)90333-0. [DOI] [PubMed] [Google Scholar]
  42. Switzer R. C., 3rd, Merril C. R., Shifrin S. A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels. Anal Biochem. 1979 Sep 15;98(1):231–237. doi: 10.1016/0003-2697(79)90732-2. [DOI] [PubMed] [Google Scholar]
  43. Trinkaus J. P. Surface activity and locomotion of Fundulus deep cells during blastula and gastrula stages. Dev Biol. 1973 Jan;30(1):69–103. doi: 10.1016/0012-1606(73)90049-3. [DOI] [PubMed] [Google Scholar]
  44. Tuchman J., Alton T., Lodish H. F. Preferential synthesis of actin during early development of the slime mold Dictyostelium discoideum. Dev Biol. 1974 Sep;40(1):116–128. doi: 10.1016/0012-1606(74)90113-4. [DOI] [PubMed] [Google Scholar]
  45. Ward S., Carrel J. S. Fertilization and sperm competition in the nematode Caenorhabditis elegans. Dev Biol. 1979 Dec;73(2):304–321. doi: 10.1016/0012-1606(79)90069-1. [DOI] [PubMed] [Google Scholar]
  46. Ward S., Miwa J. Characterization of temperature-sensitive, fertilization-defective mutants of the nematode caenorhabditis elegans. Genetics. 1978 Feb;88(2):285–303. doi: 10.1093/genetics/88.2.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Waterston R. H., Thomson J. N., Brenner S. Mutants with altered muscle structure of Caenorhabditis elegans. Dev Biol. 1980 Jun 15;77(2):271–302. doi: 10.1016/0012-1606(80)90475-3. [DOI] [PubMed] [Google Scholar]
  48. Wolf N., Hirsh D., McIntosh J. R. Spermatogenesis in males of the free-living nematode, Caenorhabditis elegans. J Ultrastruct Res. 1978 May;63(2):155–169. doi: 10.1016/s0022-5320(78)80071-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES