Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Jan 1;92(1):213–220. doi: 10.1083/jcb.92.1.213

Immunocytochemical localization of the lens main intrinsic polypeptide (MIP26) in communicating junctions

PMCID: PMC2112001  PMID: 7035467

Abstract

Plasma membranes of vertebrate lens fiber cells contain a major intrinsic polypeptide with an apparent molecular weight of 26,000 (MIP26). These plasma membranes are extremely rich in communicating junctions, and it has been suggested that MIP26 is a component of them. MIP26 was purified from cow lenses using preparative SDS gel electrophoresis followed by hydroxylapatite column chromatography. From gel electrophoresis patterns and aggregational properties it was concluded that the MIP26 preparation was homogeneous. The purified MIP26 was used to produce monospecific antibodies in rabbits as assessed by double immunodiffusion and crossed immunoelectrophoresis of purified MIP26 and solubilized lens plasma membranes against the antiserum. Indirect immunocytochemical studies were performed on open and closed lens plasma membrane vesicles by incubation in anti-MIP antiserum followed by ferritin-conjugated goat antirabbit IgG. The conjugate bound unequivocally to lens communicating junctions, indicating that MIP26 is a component of these structures.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alcalá J., Lieska N., Maisel H. Protein composition of bovine lens cortical fiber cell membranes. Exp Eye Res. 1975 Dec;21(6):581–595. doi: 10.1016/0014-4835(75)90040-8. [DOI] [PubMed] [Google Scholar]
  2. Alcalá J., Maisel H. Specific antiserum to the main intrinsic polypeptide of chick lens fiber cell plasma membranes. Exp Eye Res. 1978 Feb;26(2):219–221. doi: 10.1016/0014-4835(78)90119-7. [DOI] [PubMed] [Google Scholar]
  3. Benedetti E. L., Dunia I., Bentzel C. J., Vermorken A. J., Kibbelaar M., Bloemendal H. A portrait of plasma membrane specializations in eye lens epithelium and fibers. Biochim Biophys Acta. 1976 Dec 14;457(3-4):353–384. doi: 10.1016/0304-4157(76)90004-6. [DOI] [PubMed] [Google Scholar]
  4. Bloemendal H., Vermorken A. J., Kibbelaar M., Dunia I., Benedetti E. L. Nomenclature for the polypeptide chains of lens plasma membranes. Exp Eye Res. 1977 Apr;24(4):413–415. doi: 10.1016/0014-4835(77)90155-5. [DOI] [PubMed] [Google Scholar]
  5. Bloemendal H., Zweers A., Vermorken F., Dunia I., Benedetti E. L. The plasma membranes of eye lens fibres. Biochemical and structural characterization. Cell Differ. 1972 Jun;1(2):91–106. doi: 10.1016/0045-6039(72)90032-2. [DOI] [PubMed] [Google Scholar]
  6. Broekhuyse R. M., Kuhlmann E. D., Bijvelt J., Verkleij A. J., Ververgaert P. H. Lens membranes III. Freeze fracture morphology and composition of bovine lens fibre membranes in relation to ageing. Exp Eye Res. 1978 Feb;26(2):147–156. doi: 10.1016/0014-4835(78)90112-4. [DOI] [PubMed] [Google Scholar]
  7. Broekhuyse R. M., Kuhlmann E. D. Lens membranes 1. Composition of urea-treated plasma membranes from calf lens. Exp Eye Res. 1974 Sep;19(3):297–302. doi: 10.1016/0014-4835(74)90148-1. [DOI] [PubMed] [Google Scholar]
  8. Broekhuyse R. M., Kuhlmann E. D., Stols A. L. Lens membranes II. Isolation and characterization of the main intrinsic polypeptide (MIP) of bovine lens fiber membranes. Exp Eye Res. 1976 Sep;23(3):365–371. doi: 10.1016/0014-4835(76)90135-4. [DOI] [PubMed] [Google Scholar]
  9. Broekhuyse R. M., Kuhlmann E. D., Winkens H. J. Lens membranes VII. MIP is an immunologically specific component of lens fiber membranes and is identical with 26K band protein. Exp Eye Res. 1979 Sep;29(3):303–313. doi: 10.1016/0014-4835(79)90009-5. [DOI] [PubMed] [Google Scholar]
  10. Caspar D. L., Goodenough D. A., Makowski L., Phillips W. C. Gap junction structures. I. Correlated electron microscopy and x-ray diffraction. J Cell Biol. 1977 Aug;74(2):605–628. doi: 10.1083/jcb.74.2.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chua N. H., Blomberg F. Immunochemical studies of thylakoid membrane polypeptides from spinach and Chlamydomonas reinhardtii. A modified procedure for crossed immunoelectrophoresis of dodecyl sulfate.protein complexes. J Biol Chem. 1979 Jan 10;254(1):215–223. [PubMed] [Google Scholar]
  12. Converse C. A., Papermaster D. S. Membrane protein analysis by two-dimensional immunoelectrophoresis. Science. 1975 Aug 8;189(4201):469–472. doi: 10.1126/science.1154021. [DOI] [PubMed] [Google Scholar]
  13. Friedlander M. Immunological approaches to the study of myogenesis and lens fiber junction formation. Curr Top Dev Biol. 1980;14(Pt 2):321–358. doi: 10.1016/s0070-2153(08)60200-8. [DOI] [PubMed] [Google Scholar]
  14. Goodenough D. A., Dick J. S., 2nd, Lyons J. E. Lens metabolic cooperation: a study of mouse lens transport and permeability visualized with freeze-substitution autoradiography and electron microscopy. J Cell Biol. 1980 Aug;86(2):576–589. doi: 10.1083/jcb.86.2.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goodenough D. A., Gilula N. B. The splitting of hepatocyte gap junctions and zonulae occludentes with hypertonic disaccharides. J Cell Biol. 1974 Jun;61(3):575–590. doi: 10.1083/jcb.61.3.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Goodenough D. A. In vitro formation of gap junction vesicles. J Cell Biol. 1976 Feb;68(2):220–231. doi: 10.1083/jcb.68.2.220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Goodenough D. A. Lens gap junctions: a structural hypothesis for nonregulated low-resistance intercellular pathways. Invest Ophthalmol Vis Sci. 1979 Nov;18(11):1104–1122. [PubMed] [Google Scholar]
  18. Goodenough D. A., Paul D. L., Culbert K. E. Correlative gap junction ultrastructure. Birth Defects Orig Artic Ser. 1978;14(2):83–97. [PubMed] [Google Scholar]
  19. Henderson D., Eibl H., Weber K. Structure and biochemistry of mouse hepatic gap junctions. J Mol Biol. 1979 Aug 5;132(2):193–218. doi: 10.1016/0022-2836(79)90391-7. [DOI] [PubMed] [Google Scholar]
  20. Hertzberg E. L. Biochemical and immunological approaches to the study of gap junctional communication. In Vitro. 1980 Dec;16(12):1057–1067. doi: 10.1007/BF02619256. [DOI] [PubMed] [Google Scholar]
  21. Hertzberg E. L., Gilula N. B. Isolation and characterization of gap junctions from rat liver. J Biol Chem. 1979 Mar 25;254(6):2138–2147. [PubMed] [Google Scholar]
  22. Horwitz J., Robertson N. P., Wong M. M., Zigler J. S., Kinoshita J. H. Some properties of lens plasma membrane polypeptides isolated from normal human lenses. Exp Eye Res. 1979 Mar;28(3):359–365. doi: 10.1016/0014-4835(79)90098-8. [DOI] [PubMed] [Google Scholar]
  23. Horwitz J., Wong M. M. Peptide mapping by limited proteolysis in sodium dodecyl sulfate of the main intrinsic polypeptides isolated from human and bovine lens plasma membranes. Biochim Biophys Acta. 1980 Mar 26;622(1):134–143. doi: 10.1016/0005-2795(80)90165-8. [DOI] [PubMed] [Google Scholar]
  24. Kuszak J., Maisel H., Harding C. V. Gap junctions of chick lens fiber cells. Exp Eye Res. 1978 Oct;27(4):495–498. doi: 10.1016/0014-4835(78)90026-x. [DOI] [PubMed] [Google Scholar]
  25. Loewenstein W. R. Permeable junctions. Cold Spring Harb Symp Quant Biol. 1976;40:49–63. doi: 10.1101/sqb.1976.040.01.008. [DOI] [PubMed] [Google Scholar]
  26. Makowski L., Caspar D. L., Phillips W. C., Goodenough D. A. Gap junction structures. II. Analysis of the x-ray diffraction data. J Cell Biol. 1977 Aug;74(2):629–645. doi: 10.1083/jcb.74.2.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nonaka T., Nishiura M., Ohkuma M. Gap junctions of lens fiber cells in freeze-fracture replicas. J Electron Microsc (Tokyo) 1976;25(1):35–36. [PubMed] [Google Scholar]
  28. Peracchia C. Calcium effects on gap junction structure and cell coupling. Nature. 1978 Feb 16;271(5646):669–671. doi: 10.1038/271669a0. [DOI] [PubMed] [Google Scholar]
  29. Peracchia C., Dulhunty A. F. Low resistance junctions in crayfish. Structural changes with functional uncoupling. J Cell Biol. 1976 Aug;70(2 Pt 1):419–439. doi: 10.1083/jcb.70.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Peracchia C. Gap junctions. Structural changes after uncoupling procedures. J Cell Biol. 1977 Mar;72(3):628–641. doi: 10.1083/jcb.72.3.628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Peracchia C., Peracchia L. L. Gap junction dynamics: reversible effects of divalent cations. J Cell Biol. 1980 Dec;87(3 Pt 1):708–718. doi: 10.1083/jcb.87.3.708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Peracchia C., Peracchia L. L. Gap junction dynamics: reversible effects of hydrogen ions. J Cell Biol. 1980 Dec;87(3 Pt 1):719–727. doi: 10.1083/jcb.87.3.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Philipson B. T., Hanninen L., Balazs E. A. Cell contacts in human and bovine lenses. Exp Eye Res. 1975 Sep;21(3):205–219. doi: 10.1016/0014-4835(75)90091-3. [DOI] [PubMed] [Google Scholar]
  34. Rae J. L. The electrophysiology of the crystalline lens. Curr Top Eye Res. 1979;1:37–90. [PubMed] [Google Scholar]
  35. Raviola E., Goodenough D. A., Raviola G. Structure of rapidly frozen gap junctions. J Cell Biol. 1980 Oct;87(1):273–279. doi: 10.1083/jcb.87.1.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Roy D., Spector A., Farnsworth P. N. Human lens membrane: comparison of major intrinsic polypeptides from young and old lenses isolated by a new methodology. Exp Eye Res. 1979 Mar;28(3):353–358. doi: 10.1016/0014-4835(79)90097-6. [DOI] [PubMed] [Google Scholar]
  37. Simionescu M., Simionescu N., Palade G. E. Segmental differentiations of cell junctions in the vascular endothelium. The microvasculature. J Cell Biol. 1975 Dec;67(3):863–885. doi: 10.1083/jcb.67.3.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Turin L., Warner A. Carbon dioxide reversibly abolishes ionic communication between cells of early amphibian embryo. Nature. 1977 Nov 3;270(5632):56–57. doi: 10.1038/270056a0. [DOI] [PubMed] [Google Scholar]
  39. Waggoner P. R., Maisel H. Immunofluorescent study of a chick lens fiber cell membrane polypeptide. Exp Eye Res. 1978 Aug;27(2):151–157. doi: 10.1016/0014-4835(78)90085-4. [DOI] [PubMed] [Google Scholar]
  40. Wong M. M., Robertson N. P., Horwitz J. Heat induced aggregation of the sodium dodecyl sulfate-solubilized main intrinsic polypeptide isolated from bovine lens plasma membrane. Biochem Biophys Res Commun. 1978 Sep 14;84(1):158–165. doi: 10.1016/0006-291x(78)90277-2. [DOI] [PubMed] [Google Scholar]
  41. Young R. W., Fulhorst H. W. Regional differences in protein synthesis within the lens of the rat. Invest Ophthalmol. 1966 Jun;5(3):288–297. [PubMed] [Google Scholar]
  42. Zigler J. S., Jr, Horwitz J. Immunochemical studies on the major intrinsic polypeptides from human lens membrane. Invest Ophthalmol Vis Sci. 1981 Jul;21(1 Pt 1):46–51. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES