Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Jan 1;92(1):164–169. doi: 10.1083/jcb.92.1.164

Selective isoactin release from cultured embryonic skeletal muscle cells

PMCID: PMC2112004  PMID: 7056797

Abstract

The culture medium of embryonic quail myoblasts, labeled for 24 h with [35S]L-methionine, was analyzed by two-dimensional gel autoradiography. The major polypeptide observed had a 43,000 molecular weight and an isoelectric point of 5.4. This polypeptide could be specifically adsorbed to DNAse-I Sepharose. A tryptic peptide map of the [35S]methionine-labeled peptides of intracellular actin and the extracellular major polypeptide were virtually identical. These findings identify the released polypeptide as actin. A comparison of two-dimensional gel patterns of intracellular and extracellular labeled polypeptides showed a large number of differences indicating the actin release did not result from general cellular breakdown. The released actin was not filamentous as judged by its behavior during Bio-Gel A-5m chromatography (Bio-Rad Laboratories, Richmond, Calif.) The released actin did not originate solely from contaminating fibroblasts in the culture because actin was also observed in the medium in clonal myoblast cultures and in purified myotube preparations. Finally, the nonmuscle isoactins, as opposed to muscle alpha-isoactin, were released preferentially. These results indicate that within the developing muscle cell where both muscle and nonmuscle specific isoactins are simultaneously present, the different isoactins may be physically or functionally compartmentalized with the nonmuscle isoactins existing primarily at or near the cell surface.

Full Text

The Full Text of this article is available as a PDF (673.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailey A. J., Shellswell G. B., Duance V. C. Identification and change of collagen types in differentiating myoblasts and developing chick muscle. Nature. 1979 Mar 1;278(5699):67–69. doi: 10.1038/278067a0. [DOI] [PubMed] [Google Scholar]
  2. Ben-Ze'ev A., Duerr A., Solomon F., Penman S. The outer boundary of the cytoskeleton: a lamina derived from plasma membrane proteins. Cell. 1979 Aug;17(4):859–865. doi: 10.1016/0092-8674(79)90326-x. [DOI] [PubMed] [Google Scholar]
  3. Blikstad I., Markey F., Carlsson L., Persson T., Lindberg U. Selective assay of monomeric and filamentous actin in cell extracts, using inhibition of deoxyribonuclease I. Cell. 1978 Nov;15(3):935–943. doi: 10.1016/0092-8674(78)90277-5. [DOI] [PubMed] [Google Scholar]
  4. Brown S., Levinson W., Spudich J. A. Cytoskeletal elements of chick embryo fibroblasts revealed by detergent extraction. J Supramol Struct. 1976;5(2):119–130. doi: 10.1002/jss.400050203. [DOI] [PubMed] [Google Scholar]
  5. Chamberlain J. P. Fluorographic detection of radioactivity in polyacrylamide gels with the water-soluble fluor, sodium salicylate. Anal Biochem. 1979 Sep 15;98(1):132–135. doi: 10.1016/0003-2697(79)90716-4. [DOI] [PubMed] [Google Scholar]
  6. Culp L. A., Black P. H. Release of macromolecules from BALB-c mouse cell lines treated with chelating agents. Biochemistry. 1972 May 23;11(11):2161–2172. doi: 10.1021/bi00761a024. [DOI] [PubMed] [Google Scholar]
  7. Fallon J. R., Nachmias V. T. Localization of cytoplasmic and skeletal myosins in developing muscle cells by double-label immunofluorescence. J Cell Biol. 1980 Oct;87(1):237–247. doi: 10.1083/jcb.87.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Firestone G. L., Heath E. C. The effect of cyclic AMP on glycoprotein secretion in isolated rat hepatocytes. Arch Biochem Biophys. 1980 May;201(2):453–467. doi: 10.1016/0003-9861(80)90534-2. [DOI] [PubMed] [Google Scholar]
  9. Fischbach G. D. Synapse formation between dissociated nerve and muscle cells in low density cell cultures. Dev Biol. 1972 Jun;28(2):407–429. doi: 10.1016/0012-1606(72)90023-1. [DOI] [PubMed] [Google Scholar]
  10. Gadasi H., Korn E. D. Evidence for differential intracellular localization of the Acanthamoeba myosin isoenzymes. Nature. 1980 Jul 31;286(5772):452–456. doi: 10.1038/286452a0. [DOI] [PubMed] [Google Scholar]
  11. Garrels J. I., Gibson W. Identification and characterization of multiple forms of actin. Cell. 1976 Dec;9(4 Pt 2):793–805. doi: 10.1016/0092-8674(76)90142-2. [DOI] [PubMed] [Google Scholar]
  12. Horwitz A. F., Wight A., Ludwig P., Cornell R. Interrelated lipid alterations and their influence on the proliferation and fusion of cultured myogenic cells. J Cell Biol. 1978 May;77(2):334–357. doi: 10.1083/jcb.77.2.334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Izant J. G., Lazarides E. Invariance and heterogeneity in the major structural and regulatory proteins of chick muscle cells revealed by two-dimensional gel electrophoresis. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1450–1454. doi: 10.1073/pnas.74.4.1450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Koch G. L., Smith M. J. An association between actin and the major histocompatibility antigen H-2. Nature. 1978 May 25;273(5660):274–278. doi: 10.1038/273274a0. [DOI] [PubMed] [Google Scholar]
  15. Konigsberg I. R. Diffusion-mediated control of myoblast fusion. Dev Biol. 1971 Sep;26(1):133–152. doi: 10.1016/0012-1606(71)90113-8. [DOI] [PubMed] [Google Scholar]
  16. Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
  17. Lazarides E., Lindberg U. Actin is the naturally occurring inhibitor of deoxyribonuclease I. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4742–4746. doi: 10.1073/pnas.71.12.4742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lipton B. H. A fine-structural analysis of normal and modulated cells in myogenic cultures. Dev Biol. 1977 Oct 1;60(1):26–47. doi: 10.1016/0012-1606(77)90108-7. [DOI] [PubMed] [Google Scholar]
  19. Lipton B. H. A fine-structural analysis of normal and modulated cells in myogenic cultures. Dev Biol. 1977 Oct 1;60(1):26–47. doi: 10.1016/0012-1606(77)90108-7. [DOI] [PubMed] [Google Scholar]
  20. Lipton B. H. Collagen synthesis by normal and bromodeoxyuridine-modulated cells in myogenic culture. Dev Biol. 1977 Dec;61(2):153–165. doi: 10.1016/0012-1606(77)90288-3. [DOI] [PubMed] [Google Scholar]
  21. Norberg R., Thorstensson R., Utter G., Fagraeus A. F-Actin-depolymerizing activity of human serum. Eur J Biochem. 1979 Oct 15;100(2):575–583. doi: 10.1111/j.1432-1033.1979.tb04204.x. [DOI] [PubMed] [Google Scholar]
  22. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  23. Rubenstein P. A., Spudich J. A. Actin microheterogeneity in chick embryo fibroblasts. Proc Natl Acad Sci U S A. 1977 Jan;74(1):120–123. doi: 10.1073/pnas.74.1.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schubert D., Tarikas H., Humphreys S., Heinemann S., Patrick J. Protein synthesis and secretion in a myogenic cell line. Dev Biol. 1973 Jul;33(1):18–37. doi: 10.1016/0012-1606(73)90161-9. [DOI] [PubMed] [Google Scholar]
  25. Westley B., Rochefort H. A secreted glycoprotein induced by estrogen in human breast cancer cell lines. Cell. 1980 Jun;20(2):353–362. doi: 10.1016/0092-8674(80)90621-2. [DOI] [PubMed] [Google Scholar]
  26. Yeoh G. C., Greenstein D., Holtzer H. DNA polymerase activity in muscle cultures. J Cell Biol. 1978 Apr;77(1):99–102. doi: 10.1083/jcb.77.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES