Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Jan 1;92(1):176–182. doi: 10.1083/jcb.92.1.176

Acetylcholine receptor: effects of proteolysis on receptor metabolism

PMCID: PMC2112021  PMID: 6460038

Abstract

Previous studies (Miskin, R., T. G. Easton, and E. Reich, 1970, Cell. 15:1301-1312) have shown that sarcoma virus transformation and tumor promoters reduced the cell surface concentration of acetylcholine receptors (AChR) in differentiating chick embryo myogenic cultures. Both of these agents also induced high rates of plasminogen activator (PA) synthesis in myogenic cultures (Miskin, R., T. G. Easton, A. Maelicke, and E. Reich, 1978, Cell. 15:1287-1300), and the present work was performed to establish whether proteolysis might significantly affect receptor metabolism. Proteolysis in myogenic cultures was modulated by one or more of the following: stimulation of PA synthesis, direct addition of plasmin, removal of plasminogen, or addition of plasmin inhibitors. The results were: (a) When the rates of proteolysis were raised either by addition of plasmin or by stimulating PA synthesis in the presence of plasminogen, both the steady-state concentration and the half-life of surface AChR decreased, but the rate of receptor synthesis was unaffected. (b) The magnitude of these effects, and their dependence on added plasminogen, indicated that proteolysis initiated by plasminogen activation could account almost entirely for the reduction in receptor half-life produced by sarcoma virus transformation and phorbol ester. (c) The rate of receptor synthesis, which is also reduced by viral transformation and tumor promoters, was not modified by proteolysis; hence plasmin action may be responsible for a large part, but not all of the change in surface receptor under these conditions. (d) The plasmin catalysed changes in receptor parameters appear to occur in response to modified membrane metabolism resulting from proteolysis of surface components other than AChR itself.

Full Text

The Full Text of this article is available as a PDF (806.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appel S. H., Anwyl R., McAdams M. W., Elias S. Accelerated degradation of acetylcholine receptor from cultured rat myotubes with myasthenia gravis sera and globulins. Proc Natl Acad Sci U S A. 1977 May;74(5):2130–2134. doi: 10.1073/pnas.74.5.2130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Danø K., Reich E. Plasminogen activator from cells transformed by an oncogenic virus: inhibitors of the activation reaction. Biochim Biophys Acta. 1979 Jan 12;566(1):138–151. doi: 10.1016/0005-2744(79)90256-0. [DOI] [PubMed] [Google Scholar]
  3. Deutsch D. G., Mertz E. T. Plasminogen: purification from human plasma by affinity chromatography. Science. 1970 Dec 4;170(3962):1095–1096. doi: 10.1126/science.170.3962.1095. [DOI] [PubMed] [Google Scholar]
  4. Devreotes P. N., Fambrough D. M. Acetylcholine receptor turnover in membranes of developing muscle fibers. J Cell Biol. 1975 May;65(2):335–358. doi: 10.1083/jcb.65.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Drachman D. B., Angus C. W., Adams R. N., Michelson J. D., Hoffman G. J. Myasthenic antibodies cross-link acetylcholine receptors to accelerate degradation. N Engl J Med. 1978 May 18;298(20):1116–1122. doi: 10.1056/NEJM197805182982004. [DOI] [PubMed] [Google Scholar]
  6. Heinemann S., Bevan S., Kullberg R., Lindstrom J., Rice J. Modulation of acetylcholine receptor by antibody against the receptor. Proc Natl Acad Sci U S A. 1977 Jul;74(7):3090–3094. doi: 10.1073/pnas.74.7.3090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kao I., Drachman D. B. Myasthenic immunoglobulin accelerates acetylcholine receptor degradation. Science. 1977 Apr 29;196(4289):527–529. doi: 10.1126/science.850793. [DOI] [PubMed] [Google Scholar]
  8. Kirschke H., Langner J., Wiederanders B., Ansorge S., Bohley P. Cathepsin L. A new proteinase from rat-liver lysosomes. Eur J Biochem. 1977 Apr 1;74(2):293–301. doi: 10.1111/j.1432-1033.1977.tb11393.x. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Lee L. S., Weinstein I. B. Epidermal growth factor, like phorbol esters, induces plasminogen activator in HeLa cells. Nature. 1978 Aug 17;274(5672):696–697. doi: 10.1038/274696a0. [DOI] [PubMed] [Google Scholar]
  11. Lee L. S., Weinstein I. B. Tumor-promoting phorbol esters inhibit binding of epidermal growth factor to cellular receptors. Science. 1978 Oct 20;202(4365):313–315. doi: 10.1126/science.308698. [DOI] [PubMed] [Google Scholar]
  12. Libby P., Bursztajn S., Goldberg A. L. Degradation of the acetylcholine receptor in cultured muscle cells: selective inhibitors and the fate of undegraded receptors. Cell. 1980 Feb;19(2):481–491. doi: 10.1016/0092-8674(80)90523-1. [DOI] [PubMed] [Google Scholar]
  13. Libby P., Goldberg A. L. Leupeptin, a protease inhibitor, decreases protein degradation in normal and diseased muscles. Science. 1978 Feb 3;199(4328):534–536. doi: 10.1126/science.622552. [DOI] [PubMed] [Google Scholar]
  14. Miskin R., Easton T. G., Maelicke A., Reich E. Metabolism of acetylcholine receptor in chick embryo muscle cells: effects of RSV and PMA. Cell. 1978 Dec;15(4):1287–1300. doi: 10.1016/0092-8674(78)90054-5. [DOI] [PubMed] [Google Scholar]
  15. Miskin R., Easton T. G., Reich E. Plasminogen activator in chick embryo muscle cells: induction of enzyme by RSV, PMA and retinoic acid. Cell. 1978 Dec;15(4):1301–1312. doi: 10.1016/0092-8674(78)90055-7. [DOI] [PubMed] [Google Scholar]
  16. Olden K., Yamada K. M. Mechanism of the decrease in the major cell surface protein of chick embryo fibroblasts after transformation. Cell. 1977 Aug;11(4):957–969. doi: 10.1016/0092-8674(77)90307-5. [DOI] [PubMed] [Google Scholar]
  17. Sheppard J. R. Catecholamine hormone receptor differences identified on 3T3 and simian virus-transformed 3T3 cells. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1091–1094. doi: 10.1073/pnas.74.3.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Strickland S., Reich E., Sherman M. I. Plasminogen activator in early embryogenesis: enzyme production by trophoblast and parietal endoderm. Cell. 1976 Oct;9(2):231–240. doi: 10.1016/0092-8674(76)90114-8. [DOI] [PubMed] [Google Scholar]
  19. Thomopoulos P., Roth J., Lovelace E., Pastan I. Insulin receptors in normal and transformed fibroblasts: relationship to growth and transformation. Cell. 1976 Jul;8(3):417–423. doi: 10.1016/0092-8674(76)90154-9. [DOI] [PubMed] [Google Scholar]
  20. Walther P. J., Steinman H. M., Hill R. L., McKee P. A. Activation of human plasminogen by urokinase. Partial characterization of a pre-activation peptide. J Biol Chem. 1974 Feb 25;249(4):1173–1181. [PubMed] [Google Scholar]
  21. Wolfe R. A., Wu R., Sato G. H. Epidermal growth factor-induced down-regulation of receptor does not occur in HeLa cells grown in defined medium. Proc Natl Acad Sci U S A. 1980 May;77(5):2735–2739. doi: 10.1073/pnas.77.5.2735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zimmerman M., Quigley J. P., Ashe B., Dorn C., Goldfarb R., Troll W. Direct fluorescent assay of urokinase and plasminogen activators of normal and malignant cells: kinetics and inhibitor profiles. Proc Natl Acad Sci U S A. 1978 Feb;75(2):750–753. doi: 10.1073/pnas.75.2.750. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES