Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Mar 1;92(3):622–628. doi: 10.1083/jcb.92.3.622

Specific localization of scallop gill epithelial calmodulin in cilia

EW Stommel, RE Stephens, HR Masure, JF Head
PMCID: PMC2112025  PMID: 7085752

Abstract

Calmodulin has been isolated and characterized from the gill of the bay scallop aequipecten irradians. Quantitative electrophoretic analysis of epithelial cell fractions show most of the calmodulin to be localized in the cilia, specifically in the detergent- solubilized membrane-matrix fraction. Calmodulin represents 2.2 +/- 0.3 percent of the membrane-matrix protein or 0.41 +/- 0.5 percent of the total ciliary protein. Its concentration is at least 10(-4) M if distributed uniformly within the matrix. Extraction in the presence of calcium suggests that the calmodulin is not bound to the axoneme proper. The ciliary protein is identified as a calmodulin on the basis of its calcium- dependent binding to a fluphenazine-sepharose affinity column and its comigration with bovine brain calmodulin on alkaline-urea and SDS polyacrylamide gels in both the presence and absence of calcium. Scallop ciliary calmodulin activates bovine brain phosphodiesterase to the same extent as bovine brain and chicken gizzard calmodulins. Containing trimethyllysine and lacking cysteine and tryptophan, the amino acid composition of gill calmodulin is typical of known calmodulins, except that it is relatively high in serine and low in methionine. Its composition is less acidic than other calmodulins, in agreement with an observed isoelectric point approximately 0.2 units higher than that of bovine brain. Comparative tryptic peptide mapping of scallop gill ciliary and bovine brain calmodulins indicates coincidence of over 75 percent of the major peptides, but at least two major peptides in each show no near-equivalency. Preliminary results using ATP-reactivated gill cell models show no effect of calcium at micromolar levels on ciliary beat or directionality of the lateral cilia, the cilia which constitute the vast majority of those isolated. However, ciliary arrest will occur at calcium levels more than 150 muM. Because calmodulin usually functions in the micromolar range, its role in this system is unclear. Scallop gill ciliary calmodulin may be involved in the direct regulation of dyneintubule sliding, or it may serve some coupled calcium transport function. At the concentration in which it is found, it must also at least act as a calcium buffer.

Full Text

The Full Text of this article is available as a PDF (828.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berkowitz S. A., Katagiri J., Binder H. K., Williams R. C., Jr Separation and characterization of microtubule proteins from calf brain. Biochemistry. 1977 Dec 13;16(25):5610–5617. doi: 10.1021/bi00644a035. [DOI] [PubMed] [Google Scholar]
  2. Blum J. J., Hayes A., Jamieson G. A., Jr, Vanaman T. C. Calmodulin confers calcium sensitivity on ciliary dynein ATPase. J Cell Biol. 1980 Nov;87(2 Pt 1):386–397. doi: 10.1083/jcb.87.2.386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boudreau R. J., Drummond G. I. A modified assay of 3':5'-cyclic-AMP phosphodiesterase. Anal Biochem. 1975 Feb;63(2):388–399. doi: 10.1016/0003-2697(75)90361-9. [DOI] [PubMed] [Google Scholar]
  4. Charbonneau H., Cormier M. J. Purification of plant calmodulin by fluphenazine-Sepharose affinity chromatography. Biochem Biophys Res Commun. 1979 Oct 12;90(3):1039–1047. doi: 10.1016/0006-291x(79)91931-4. [DOI] [PubMed] [Google Scholar]
  5. Doughty M. J., Dryl S. Control of ciliary activity in Paramecium: an analysis of chemosensory transduction in a eukaryotic unicellular organism. Prog Neurobiol. 1981;16(1):1–115. doi: 10.1016/0301-0082(81)90008-3. [DOI] [PubMed] [Google Scholar]
  6. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  7. Gibbons I. R. Chemical dissection of cilia. Arch Biol (Liege) 1965;76(2):317–352. [PubMed] [Google Scholar]
  8. Gitelman S. E., Witman G. B. Purification of calmodulin from Chlamydomonas: calmodulin occurs in cell bodies and flagella. J Cell Biol. 1980 Dec;87(3 Pt 1):764–770. doi: 10.1083/jcb.87.3.764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Graf E., Penniston J. T. Equimolar interaction between calmodulin and the Ca2+ ATPase from human erythrocyte membranes. Arch Biochem Biophys. 1981 Aug;210(1):257–262. doi: 10.1016/0003-9861(81)90187-9. [DOI] [PubMed] [Google Scholar]
  10. Head J. F., Mader S., Kaminer B. Calcium-binding modulator protein from the unfertilized egg of the sea urchin Arbacia punctulata. J Cell Biol. 1979 Jan;80(1):211–218. doi: 10.1083/jcb.80.1.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Head J. F., Perry S. V. The interaction of the calcium-binding protein (troponin C) with bivalent cations and the inhibitory protein (troponin I). Biochem J. 1974 Feb;137(2):145–154. doi: 10.1042/bj1370145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jamieson G. A., Jr, Bronson D. D., Schachat F. H., Vanaman T. C. Structure and function relationships among calmodulins and troponin C-like proteins from divergent eukaryotic organisms. Ann N Y Acad Sci. 1980;356:1–13. doi: 10.1111/j.1749-6632.1980.tb29593.x. [DOI] [PubMed] [Google Scholar]
  13. Machemer H., Ogura A. Ionic conductances of membranes in ciliated and deciliated Paramecium. J Physiol. 1979 Nov;296:49–60. doi: 10.1113/jphysiol.1979.sp012990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Maihle N. J., Dedman J. R., Means A. R., Chafouleas J. G., Satir B. H. Presence and indirect immunofluorescent localization of calmodulin in Paramecium tetraurelia. J Cell Biol. 1981 Jun;89(3):695–699. doi: 10.1083/jcb.89.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Reed W., Satir P. Calmodulin in mussel gill epithelial cells: role in ciliary arrest. Ann N Y Acad Sci. 1980;356:423–426. doi: 10.1111/j.1749-6632.1980.tb29657.x. [DOI] [PubMed] [Google Scholar]
  16. Satir B. H., Garofalo R. S., Gilligan D. M., Maihle N. J. Possible functions of calmodulin in protozoa. Ann N Y Acad Sci. 1980;356:83–91. doi: 10.1111/j.1749-6632.1980.tb29602.x. [DOI] [PubMed] [Google Scholar]
  17. Satir P. Ionophore-mediated calcium entry induces mussel gill ciliary arrest. Science. 1975 Nov 7;190(4214):586–588. doi: 10.1126/science.1103290. [DOI] [PubMed] [Google Scholar]
  18. Stephens R. E. Fluorescent thin-layer peptide mapping for protein identification and comparison in the subnanomole range. Anal Biochem. 1978 Jan;84(1):116–126. doi: 10.1016/0003-2697(78)90490-6. [DOI] [PubMed] [Google Scholar]
  19. Stephens R. E. Major membrane protein differences in cilia and flagella: evidence for a membrane-associated tubulin. Biochemistry. 1977 May 17;16(10):2047–2058. doi: 10.1021/bi00629a001. [DOI] [PubMed] [Google Scholar]
  20. Stephens R. E. The basal apparatus. Mass isolation from the molluscan ciliated gill epithelium and a preliminary characterization of striated rootlets. J Cell Biol. 1975 Feb;64(2):408–420. doi: 10.1083/jcb.64.2.408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Walter M. F., Satir P. Calcium control of ciliary arrest in mussel gill cells. J Cell Biol. 1978 Oct;79(1):110–120. doi: 10.1083/jcb.79.1.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Walter M. F., Schultz J. E. Calcium receptor protein calmodulin isolated from cilia and cells of Paramecium tetraurelia. Eur J Cell Biol. 1981 Apr;24(1):97–100. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES