Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Mar 1;92(3):790–794. doi: 10.1083/jcb.92.3.790

Nuclear localization of aspartate transcabamoylase in Saccharomyces cerevisiae

PMCID: PMC2112030  PMID: 7045137

Abstract

The cytochemical technique using the in situ precipitation of orthophosphate ions liberated specifically by the aspartate carbamoyltransferase (ATCase) (EC 2.1.3.2) reaction indicated that in Saccharomyces cerevisiae this enzyme is confined to the nucleus. This observation is in accordance with the result reported by Bernhardt and Davis (1972), Proc. Natl. Acad. Sci. U. S. A. 69:1868-1872) on Neurospora crassa. The nuclear compartmentation was also observed in a mutant strain lacking proteinase B activity. This finding indicates that this proteinase is not involved in the nuclear accumulation of ATCase, and that the activity observed in the nucleus corresponds to the multifunctional form associated with the uracil path-specific carbamoylphosphate synthetase and sensitive to feedback inhibition by UTP. In a ura2 strain transformed by nonintegrated pFL1 plasmids bearing the URA2-ATCase activity encoding gene, the lead phosphate precipitate was observed predominantly in the cytoplasm. This finding enhances the reliability of the technique used by eliminating the possibility of an artifactual displacement of an originally cytoplasmic reaction product during the preparation of the material for electron microscopy. On the other hand, nuclei isolated under hypoosmotic conditions do not exhibit the ATCase activity that is recovered in the cytosolic fractions after differential centrifugation of the lysate in Percoll gradient. A release of the protein from the nuclei during the lysis step, consistent with its nucleoplasmic localization, is postulated.

Full Text

The Full Text of this article is available as a PDF (590.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernhardt S. A., Davis R. H. Carbamoyl phosphate compartmentation in Neurospora: histochemical localization of aspartate and ornithine transcarbamoylases. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1868–1872. doi: 10.1073/pnas.69.7.1868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Davis R. H., Bowman B. J., Weiss R. L. Intracellular compartmentation and transport of metabolites. J Supramol Struct. 1978;9(4):473–488. doi: 10.1002/jss.400090403. [DOI] [PubMed] [Google Scholar]
  3. Denis-Duphil M., Kaplan J. G. Fine structure of the URA2 locus in Saccharomyces cerevisiae. II. Meiotic and mitotic mapping studies. Mol Gen Genet. 1976 Jun 15;145(3):259–271. doi: 10.1007/BF00325822. [DOI] [PubMed] [Google Scholar]
  4. Denis-Duphil M., Mathien-Shire Y., Hervé G. Proteolytically induced changes in the molecular form of the carbamyl phosphate synthetase-uracil-aspartate transcarbamylase complex coded for by the URA2 locus in Saccharomyces cerevisiae. J Bacteriol. 1981 Nov;148(2):659–669. doi: 10.1128/jb.148.2.659-669.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Duffus J. H. The isolation of yeast nuclei and methods to study their properties. Methods Cell Biol. 1975;12:77–97. doi: 10.1016/s0091-679x(08)60953-x. [DOI] [PubMed] [Google Scholar]
  6. Goldstein L., Ko C. Distribution of proteins between nucleus and cytoplasm of Amoeba proteus. J Cell Biol. 1981 Mar;88(3):516–525. doi: 10.1083/jcb.88.3.516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jauniaux J. C., Urrestarazu L. A., Wiame J. M. Arginine metabolism in Saccharomyces cerevisiae: subcellular localization of the enzymes. J Bacteriol. 1978 Mar;133(3):1096–1107. doi: 10.1128/jb.133.3.1096-1107.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lacroute F., Piérard A., Grenson M., Wiame J. M. The biosynthesis of carbamoyl phosphate in Saccharomyces cerevisiae. J Gen Microbiol. 1965 Jul;40(1):127–142. doi: 10.1099/00221287-40-1-127. [DOI] [PubMed] [Google Scholar]
  9. Lin Y. C., Rose K. M., Jacob S. T. Evidence for the nuclear origin of RNA polymerases identified in the cytosol: release of enzymes from the nuclei isolated in isotonic sucrose. Biochem Biophys Res Commun. 1976 Sep 7;72(1):114–120. doi: 10.1016/0006-291x(76)90968-2. [DOI] [PubMed] [Google Scholar]
  10. Lohr D., Ide G. Comparison on the structure and transcriptional capability of growing phase and stationary yeast chromatin: a model for reversible gene activation. Nucleic Acids Res. 1979;6(5):1909–1927. doi: 10.1093/nar/6.5.1909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Masters C. J. Metabolic control and the microenvironment. Curr Top Cell Regul. 1977;12:75–105. doi: 10.1016/b978-0-12-152812-6.50009-3. [DOI] [PubMed] [Google Scholar]
  12. Merker H. J., Spors S. Electron microscopic demonstration of ornithine carbamoyltransferase in rat liver. Histochemie. 1969;17(1):83–88. doi: 10.1007/BF00306334. [DOI] [PubMed] [Google Scholar]
  13. Mizutani A. Cytochemical demonstration of ornithine carbamoyltransferase activity in liver mitochondria of rat and mouse. J Histochem Cytochem. 1968 Mar;16(3):172–180. doi: 10.1177/16.3.172. [DOI] [PubMed] [Google Scholar]
  14. Plagemann P. G. Nucleotide pools of Novikoff rat hepatoma cells growing in suspension culture. II. Independent nucleotide pools for nucleic acid synthesis. J Cell Physiol. 1971 Apr;77(2):241–248. doi: 10.1002/jcp.1040770213. [DOI] [PubMed] [Google Scholar]
  15. Rose K. M., Lin Y. C., Jacob S. T. Poly(adenylic acid) polymerase: loss of enzyme from rat liver nuclei isolated under isotonic conditions. FEBS Lett. 1976 Aug 15;67(2):193–197. doi: 10.1016/0014-5793(76)80364-x. [DOI] [PubMed] [Google Scholar]
  16. Ryan E. D., Kohlhaw G. B. Subcellular localization of isoleucine-valine biosynthetic enzymes in yeast. J Bacteriol. 1974 Nov;120(2):631–637. doi: 10.1128/jb.120.2.631-637.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ryan E. D., Tracy J. W., Kohlhaw G. B. Subcellular localization of the leucine biosynthetic enzymes in yeast. J Bacteriol. 1973 Oct;116(1):222–225. doi: 10.1128/jb.116.1.222-225.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Spors S., Merker H. J. Fine structural localization of aspartate carbamoyltransferase in rat liver. Histochemie. 1969;17(1):78–82. doi: 10.1007/BF00306333. [DOI] [PubMed] [Google Scholar]
  19. Williams L. G., Bernhardt S. A., Davis R. H. Evidence for two discrete carbamyl phosphate pools in Neurospora. J Biol Chem. 1971 Feb 25;246(4):973–978. [PubMed] [Google Scholar]
  20. Wintersberger U., Smith P., Letnansky K. Yeast chromatin. Preparation from isolated nuclei, histone composition and transcription capacity. Eur J Biochem. 1973 Feb 15;33(1):123–130. doi: 10.1111/j.1432-1033.1973.tb02663.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES