Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Mar 1;92(3):604–615. doi: 10.1083/jcb.92.3.604

Modifications of anionic-lipid domains preceding membrane fusion in guinea pig sperm

EL Bearer, DS Friend
PMCID: PMC2112035  PMID: 7085750

Abstract

The relationship between anionic-lipid concentration and the functional properties of plasma-membrane domains was explored using the guinea-pig sperm membrane as a model, with polymyxin B (PXB) as a probe. Areas of plasmalemma specialized for fusion during the acrosome reaction had a higher affinity for the probe than adjacent nonfusigenic regions. In addition, capacitation--a process preceding acrosome:plasma-membrane fusion--markedly enlarged the area susceptible to PXB binding over the acrosomal cap. Protease treatment mimicked capacitation by increasing the acrosome-reaction incidence as well as PXB binding, at enzyme concentrations not affecting the surface coat nor altering filipin/sterol localization. Both proteolytic digestion and capacitation failed to augment PXB- or filipin-affinity in nonfusigenic zones, such as the post-acrosomal segment, including its particle-free maculae. Incubation of sperm in capacitating medium supplemented with 32P-labeled phosphate, followed by lipid extraction, thin-layer chromatography, and autoradiography, revealed a radioactive band comigrating with cardiolipin and phosphatidic acid. Vermiform protrusions elicited by PXB in the outer lamellae of cardiolipin- phosphatidylcholine liposomes resembled those seen in fusional regions of sperm membrane. We conclude that (a) differing concentrations of anionic lipids are found in adjacent domains of the sperm plasma membrane; (b) these domains mirror the functional regions of the membrane, with higher anionic-lipid concentrations localized over fusional zones; (c) the surface coat does not participate in the maintenance of such domains; (d) anionic-lipid synthesis may contribute to their formation; and (e) anionic-lipid concentrations increase as the membrane becomes fusionally competent, indicating that cellular modulation of lipid domains accompanies regulation of membrane function.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bearer E. L., Friend D. S. Anionic lipid domains: correlation with functional topography in a mammalian cell membrane. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6601–6605. doi: 10.1073/pnas.77.11.6601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bedford J. M., Moore H. D., Franklin L. E. Significance of the equatorial segment of the acrosome of the spermatozoon in eutherian mammals. Exp Cell Res. 1979 Mar 1;119(1):119–126. doi: 10.1016/0014-4827(79)90341-0. [DOI] [PubMed] [Google Scholar]
  3. Birrell G. B., Griffith O. H. Cytochrome c induced lateral phase separation in a diphosphatidylglycerol-steroid spin-label model membrane. Biochemistry. 1976 Jun 29;15(13):2925–2929. doi: 10.1021/bi00658a035. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Bradley M. P., Rayns D. G., Forrester I. T. Effects of filipin, digitonin, and polymyxin b on plasma membrane of ram spermatozoa--an EM study. Arch Androl. 1980 May;4(3):195–204. doi: 10.3109/01485018008986963. [DOI] [PubMed] [Google Scholar]
  6. Bretscher M. S. Membrane structure: some general principles. Science. 1973 Aug 17;181(4100):622–629. doi: 10.1126/science.181.4100.622. [DOI] [PubMed] [Google Scholar]
  7. Bryan H. D., Akruk S. R. A naphthol yellow S and erythrosin B staining procedure for use in studies of the acrosome reaction of rabbit spermatozoa. Stain Technol. 1977 Jan;52(1):47–51. doi: 10.3109/10520297709116742. [DOI] [PubMed] [Google Scholar]
  8. Chandler D. E., Heuser J. E. Arrest of membrane fusion events in mast cells by quick-freezing. J Cell Biol. 1980 Aug;86(2):666–674. doi: 10.1083/jcb.86.2.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. El Mashak E. M., Tocanne J. F. Polymyxin B-phosphatidylglycerol interactions. A monolayer (pi, delta V) study. Biochim Biophys Acta. 1980 Feb 28;596(2):165–179. doi: 10.1016/0005-2736(80)90351-x. [DOI] [PubMed] [Google Scholar]
  10. Elias P. M., Friend D. S., Goerke J. Membrane sterol heterogeneity. Freeze-fracture detection with saponins and filipin. J Histochem Cytochem. 1979 Sep;27(9):1247–1260. doi: 10.1177/27.9.479568. [DOI] [PubMed] [Google Scholar]
  11. Evans R. W., Weaver D. E., Clegg E. D. Diacyl, alkenyl, and alkyl ether phospholipids in ejaculated, in utero-, and in vitro-incubated porcine spermatozoa. J Lipid Res. 1980 Feb;21(2):223–228. [PubMed] [Google Scholar]
  12. Fambrough D. M. Control of acetylcholine receptors in skeletal muscle. Physiol Rev. 1979 Jan;59(1):165–227. doi: 10.1152/physrev.1979.59.1.165. [DOI] [PubMed] [Google Scholar]
  13. Fléchon J. E., Morstin J. Localisation des glycoprotéines et des charges négatives et positives dans le revêtement de surface des spermatozoïdes éjaculés de lapin et de taureau. Ann Histochim. 1975 Oct-Dec;20(4):291–300. [PubMed] [Google Scholar]
  14. Friend D. S., Bearer E. L. beta-Hydroxysterol distribution as determined by freeze-fracture cytochemistry. Histochem J. 1981 Jul;13(4):535–546. doi: 10.1007/BF01002709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Friend D. S., Fawcett D. W. Membrane differentiations in freeze-fractured mammalian sperm. J Cell Biol. 1974 Nov;63(2 Pt 1):641–664. doi: 10.1083/jcb.63.2.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Friend D. S. Freeze-fracture alterations in guinea pig sperm membranes preceding gamete fusion. Soc Gen Physiol Ser. 1980;34:153–165. [PubMed] [Google Scholar]
  17. Friend D. S., Heuser J. E. Orderly particle arrays on the mitochondrial outer membrane in rapidly-frozen sperm. Anat Rec. 1981 Feb;199(2):159–175. doi: 10.1002/ar.1091990202. [DOI] [PubMed] [Google Scholar]
  18. Friend D. S., Orci L., Perrelet A., Yanagimachi R. Membrane particle changes attending the acrosome reaction in guinea pig spermatozoa. J Cell Biol. 1977 Aug;74(2):561–577. doi: 10.1083/jcb.74.2.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gordon M., Dandekar P. V., Bartoszewicz W. The surface coat of epididymal, ejaculated and capacitated sperm. J Ultrastruct Res. 1975 Feb;50(2):199–207. doi: 10.1016/s0022-5320(75)80051-7. [DOI] [PubMed] [Google Scholar]
  20. Hartmann W., Galla H. J., Sackmann E. Polymyxin binding to charged lipid membranes. An example of cooperative lipid-protein interaction. Biochim Biophys Acta. 1978 Jun 16;510(1):124–139. doi: 10.1016/0005-2736(78)90135-9. [DOI] [PubMed] [Google Scholar]
  21. Ioannou P. V., Golding B. T. Cardiolipins: their chemistry and biochemistry. Prog Lipid Res. 1979;17(3):279–318. doi: 10.1016/0079-6832(79)90010-7. [DOI] [PubMed] [Google Scholar]
  22. Jan L. Y., Revel J. P. Hemocyanin - antibody labeling of phodopsin in mouse retina for a scanning electron microscope study. J Supramol Struct. 1975;3(1):61–66. doi: 10.1002/jss.400030107. [DOI] [PubMed] [Google Scholar]
  23. Johnson W. L., Hunter A. G. Seminal antigens: their alteration in the genital tract of female rabbits and during partial in vitro capacitation with beta amylase and beta glucuronidase. Biol Reprod. 1972 Dec;7(3):332–340. doi: 10.1093/biolreprod/7.3.332. [DOI] [PubMed] [Google Scholar]
  24. Jones H. P., Lenz R. W., Palevitz B. A., Cormier M. J. Calmodulin localization in mammalian spermatozoa. Proc Natl Acad Sci U S A. 1980 May;77(5):2772–2776. doi: 10.1073/pnas.77.5.2772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kirton K. T., Hafs H. D. Sperm capacitation by uterine fluid or beta-amylase in vitro. Science. 1965 Oct 29;150(3696):618–619. doi: 10.1126/science.150.3696.618. [DOI] [PubMed] [Google Scholar]
  26. Mercado E., Rosado A. Structural properties of the membrane of intact human spermatozoa. A study with fluorescent probes. Biochim Biophys Acta. 1973 Mar 29;298(3):639–652. doi: 10.1016/0005-2736(73)90080-1. [DOI] [PubMed] [Google Scholar]
  27. Mills J. W., Macknight A. D., Jarrell J. A., Dayer J. M., Ausiello D. A. Interaction of ouabain with the Na+ pump in intact epithelial cells. J Cell Biol. 1981 Mar;88(3):637–643. doi: 10.1083/jcb.88.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Montesano R., Vassalli P., Perrelet A., Orci L. Distribution of filipin-cholesterol complexes at sites of exocytosis - a freeze-fracture study of degranulating mast cells. Cell Biol Int Rep. 1980 Nov;4(11):975–984. doi: 10.1016/0309-1651(80)90170-8. [DOI] [PubMed] [Google Scholar]
  29. Myles D. G., Primakoff P., Bellvé A. R. Surface domains of the guinea pig sperm defined with monoclonal antibodies. Cell. 1981 Feb;23(2):433–439. doi: 10.1016/0092-8674(81)90138-0. [DOI] [PubMed] [Google Scholar]
  30. NEVO A. C., MICHAELI I., SCHINDLER H. Electrophoretic properties of bull and of rabbit spermatozoa. Exp Cell Res. 1961 Feb;23:69–83. doi: 10.1016/0014-4827(61)90064-7. [DOI] [PubMed] [Google Scholar]
  31. Olson G. E., Danzo B. J. Surface changes in rat spermatozoa during epididymal transit. Biol Reprod. 1981 Mar;24(2):431–443. doi: 10.1095/biolreprod24.2.431. [DOI] [PubMed] [Google Scholar]
  32. Olson G. E., Hamilton D. W. Characterization of the surface glycoproteins of rat spermatozoa. Biol Reprod. 1978 Aug;19(1):26–35. doi: 10.1095/biolreprod19.1.26. [DOI] [PubMed] [Google Scholar]
  33. Orci L., Perrelet A., Friend D. S. Freeze-fracture of membrane fusions during exocytosis in pancreatic B-cells. J Cell Biol. 1977 Oct;75(1):23–30. doi: 10.1083/jcb.75.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Papahadjopoulos D. Surface properties of acidic phospholipids: interaction of monolayers and hydrated liquid crystals with uni- and bi-valent metal ions. Biochim Biophys Acta. 1968 Sep 17;163(2):240–254. doi: 10.1016/0005-2736(68)90103-x. [DOI] [PubMed] [Google Scholar]
  35. Phillips D. M. Surface of the equatorial segment of the mammalian acrosome. Biol Reprod. 1977 Feb;16(1):128–137. doi: 10.1095/biolreprod16.1.128. [DOI] [PubMed] [Google Scholar]
  36. Pinto da Silva P., Nogueira M. L. Membrane fusion during secretion. A hypothesis based on electron microscope observation of Phytophthora Palmivora zoospores during encystment. J Cell Biol. 1977 Apr;73(1):161–181. doi: 10.1083/jcb.73.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Robinson J. M., Karnovsky M. J. Specializations in filopodial membranes at points of attachment to the substrate. J Cell Biol. 1980 Dec;87(3 Pt 1):562–568. doi: 10.1083/jcb.87.3.562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schlegel R. A., Phelps B. M., Waggoner A., Terada L., Williamson P. Binding of merocyanine 540 to normal and leukemic erythroid cells. Cell. 1980 Jun;20(2):321–328. doi: 10.1016/0092-8674(80)90618-2. [DOI] [PubMed] [Google Scholar]
  39. Schwarz M. A., Koehler J. K. Alterations in lectin binding to guinea pig spermatozoa accompanying in vitro capacitation and the acrosome reaction. Biol Reprod. 1979 Dec;21(5):1295–1307. doi: 10.1095/biolreprod21.5.1295. [DOI] [PubMed] [Google Scholar]
  40. Simionescu N., Simionescu M. Galloylglucoses of low molecular weight as mordant in electron microscopy. I. Procedure, and evidence for mordanting effect. J Cell Biol. 1976 Sep;70(3):608–621. doi: 10.1083/jcb.70.3.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sixl F., Galla H. J. Cooperative lipid-protein interaction. Effect of pH and ionic strength on polymyxin binding to phosphatidic acid membranes. Biochim Biophys Acta. 1979 Nov 2;557(2):320–330. doi: 10.1016/0005-2736(79)90330-4. [DOI] [PubMed] [Google Scholar]
  42. Storm D. R., Rosenthal K. S., Swanson P. E. Polymyxin and related peptide antibiotics. Annu Rev Biochem. 1977;46:723–763. doi: 10.1146/annurev.bi.46.070177.003451. [DOI] [PubMed] [Google Scholar]
  43. Yanagimachi R. Acceleration of the acrosome reaction and activation of guinea pigs spermatozoa by detergents and other reagents. Biol Reprod. 1975 Dec;13(5):519–526. doi: 10.1095/biolreprod13.5.519. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES