Abstract
K12 is a temperature-sensitive (ts) mutant cell line derived from Chinese hamster fibroblasts. When incubated at the nonpermissive temperature, K12 cells exhibit the following properties: (a) the cells cannot initiate DNA synthesis;o (b) the synthesis of cytosol thymidine kinase is suppressed; and (c) the synthesis of three cellular proteins of molecular weights 94, 78, and 58 kdaltons is greatly enhanced. Here we characterize a spontaneous revertant clone, R12, derived from the K12 cells. We selected the revertant clone for its ability to grow at the nonpermissive temperature. Our results indicate that all the traits which constitute the K12 mutant phenotype are simultaneously reverted to the wild type in the revertant cell line, suggesting that the ts mutation of the K12 cells is of regulatory nature and exerts multiple effects on the expressed phenotypes.
Full Text
The Full Text of this article is available as a PDF (519.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Kit S., Jorgensen G. N. Formation of thymidine kinase and deoxycytidylate deaminase in synchronized cultures of chinese hamster cells temperature-sensitive for DNA synthesis. J Cell Physiol. 1976 May;88(1):57–64. doi: 10.1002/jcp.1040880108. [DOI] [PubMed] [Google Scholar]
- Marin G., Labella T. Chromosome replication in somatic hybrids of mouse and temperature sensitive Chinese hamster cells. J Cell Physiol. 1977 Jan;90(1):71–78. doi: 10.1002/jcp.1040900110. [DOI] [PubMed] [Google Scholar]
- Melero J. A., Fincham V. Enhancement of the synthesis of specific cellular polypeptides in a temperature-sensitive Chinese hamster cell line (K12) defective for entry into S phase. J Cell Physiol. 1978 Jun;95(3):295–306. doi: 10.1002/jcp.1040950307. [DOI] [PubMed] [Google Scholar]
- Melero J. A. Isolation and cell cycle analysis of temperature-sensitive mutants from Chinese hamster cells. J Cell Physiol. 1979 Jan;98(1):17–30. doi: 10.1002/jcp.1040980104. [DOI] [PubMed] [Google Scholar]
- Roscoe D. H., Read M., Robinson H. Isolation of temperature sensitive mammalian cells by selective detachment. J Cell Physiol. 1973 Dec;82(3):325–331. doi: 10.1002/jcp.1040820302. [DOI] [PubMed] [Google Scholar]
- Roscoe D. H., Robinson H., Carbonell A. W. DNA synthesis and mitosis in a temperature sensitive Chinese hamster cell line. J Cell Physiol. 1973 Dec;82(3):333–338. doi: 10.1002/jcp.1040820303. [DOI] [PubMed] [Google Scholar]
- Shiu R. P., Pouyssegur J., Pastan I. Glucose depletion accounts for the induction of two transformation-sensitive membrane proteinsin Rous sarcoma virus-transformed chick embryo fibroblasts. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3840–3844. doi: 10.1073/pnas.74.9.3840. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siminovitch L., Thompson L. H. The nature of conditionally lethal temperature-sensitive mutations in somatic cells. J Cell Physiol. 1978 Jun;95(3):361–364. doi: 10.1002/jcp.1040950314. [DOI] [PubMed] [Google Scholar]
- Smith B. J., Wigglesworth N. M. A temperature-sensitive function in a Chinese hamster line affecting DNA synthesis. J Cell Physiol. 1973 Dec;82(3):339–347. doi: 10.1002/jcp.1040820304. [DOI] [PubMed] [Google Scholar]
