Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Mar 1;92(3):777–782. doi: 10.1083/jcb.92.3.777

Evidence that cAMP-dependent protein kinase and a protein factor are involved in reactivation of triton X-100 models of sea urchin and starfish spermatozoa

PMCID: PMC2112046  PMID: 6282892

Abstract

A fraction obtained from detergent-extract of sea urchin or starfish spermatozoa using DEAE-cellulose chromatography reactivated Triton X- 100 models of the spermatozoa in a cAMP-dependent manner. The DEAE fraction contained cAMP-dependent protein kinase with a high level of specific activity. Rabbit muscle inhibitor protein highly specific for cAMP-dependent protein kinases inhibited the ability of the deae fraction to induce reactivation of Triton X-100 models.l This inhibition paralleled inhibition of cAMP-dependent protein kinase activity of the DEAE fraction, suggesting participation of the enzyme in the cAMP-dependent reactivation of Triton X-100 models. However, cAMP-dependent protein kinase further purified from the DEAE fraction was incapable of reactivating these models by itself. A protein factor which was separated from the protein kinase in the course of purification of the enzyme was found to also be necessary for the reactivation. When cAMP-dependent protein kinase was pretreated with protein kinase inhibitor before addition of the protein factor, the reactivation of Triton X-100 models was no longer detected. However, after the protein factor had been incubated with cAMP and cAMP- dependent protein kinase, protein kinase inhibitor did not repress reactivation of Triton X-100 models. We propose that the reactivation needs phosphorylation of the protein factor by cAMP-dependent protein kinase.

Full Text

The Full Text of this article is available as a PDF (581.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brandt H., Hoskins D. D. A cAMP-dependent phosphorylated motility protein in bovine epididymal sperm. J Biol Chem. 1980 Feb 10;255(3):982–987. [PubMed] [Google Scholar]
  2. Cascieri M., Amann R. P., Hammerstedt R. H. Adenine nucleotide changes at initiation of bull sperm motility. J Biol Chem. 1976 Feb 10;251(3):787–793. [PubMed] [Google Scholar]
  3. Garbers D. L., First N. L., Lardy H. A. Properties of adenosine 3',5'-monophosphate-dependent protein kinases isolated from bovine epididymal spermatozoa. J Biol Chem. 1973 Feb 10;248(3):875–879. [PubMed] [Google Scholar]
  4. Garbers D. L., Hardman J. G. Factors released from sea urchin eggs affect cyclic nucleotide metabolism in sperm. Nature. 1975 Oct 23;257(5528):677–678. doi: 10.1038/257677a0. [DOI] [PubMed] [Google Scholar]
  5. Gibbons B. H., Gibbons I. R. Calcium-induced quiescence in reactivated sea urchin sperm. J Cell Biol. 1980 Jan;84(1):13–27. doi: 10.1083/jcb.84.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gibbons B. H., Gibbons I. R. Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with triton X-100. J Cell Biol. 1972 Jul;54(1):75–97. doi: 10.1083/jcb.54.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gibbons B. H., Gibbons I. R. The effect of partial extraction of dynein arms on the movement of reactivated sea-urchin sperm. J Cell Sci. 1973 Sep;13(2):337–357. doi: 10.1242/jcs.13.2.337. [DOI] [PubMed] [Google Scholar]
  8. Gibbons B. H., Ogawa K., Gibbons I. R. The effect of antidynein 1 serum on the movement of reactivated sea urchin sperm. J Cell Biol. 1976 Dec;71(3):823–831. doi: 10.1083/jcb.71.3.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Glynn I. M., Chappell J. B. A simple method for the preparation of 32-P-labelled adenosine triphosphate of high specific activity. Biochem J. 1964 Jan;90(1):147–149. doi: 10.1042/bj0900147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gray J. P., Drummond G. I., Luk D. W., Hardman J. G., Sutherland E. W. Enzymes of cyclic nucleotide metabolism in invertebrate and vertebrate sperm. Arch Biochem Biophys. 1976 Jan;172(1):20–30. doi: 10.1016/0003-9861(76)90043-6. [DOI] [PubMed] [Google Scholar]
  11. Hoskins D. D. Adenine nucleotide mediation of fructolysis and motility in bovine epididymal spermatozoa. J Biol Chem. 1973 Feb 25;248(4):1135–1140. [PubMed] [Google Scholar]
  12. Kuo J. F., Greengard P. Cyclic nucleotide-dependent protein kinases. IV. Widespread occurrence of adenosine 3',5'-monophosphate-dependent protein kinase in various tissues and phyla of the animal kingdom. Proc Natl Acad Sci U S A. 1969 Dec;64(4):1349–1355. doi: 10.1073/pnas.64.4.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Lee M. Y., Iverson R. M. An adenosine 3':5' monophosphate dependent protein kinase from sea urchin spermatozoa. Biochim Biophys Acta. 1976 Mar 11;429(1):123–136. doi: 10.1016/0005-2744(76)90035-8. [DOI] [PubMed] [Google Scholar]
  15. Lindemann C. B. A cAMP-induced increase in the motility of demembranated bull sperm models. Cell. 1978 Jan;13(1):9–18. doi: 10.1016/0092-8674(78)90133-2. [DOI] [PubMed] [Google Scholar]
  16. Mabuchi I., Shimizu T., Mabuchi Y. A biochemical study of flagellar dynein from starfish spermatozoa: protein components of the arm structure. Arch Biochem Biophys. 1976 Oct;176(2):564–576. doi: 10.1016/0003-9861(76)90200-9. [DOI] [PubMed] [Google Scholar]
  17. Mohri H., Yanagimachi R. Characteristics of motor apparatus in testicular, epididymal and ejaculated spermatozoa. A study using demembranated sperm models. Exp Cell Res. 1980 May;127(1):191–196. doi: 10.1016/0014-4827(80)90426-7. [DOI] [PubMed] [Google Scholar]
  18. Morton B., Harrigan-Lum J., Albagli L., Jooss T. The activation of motility in quiescent hamster sperm from the epididymis by calcium and cyclic nucleotides. Biochem Biophys Res Commun. 1974 Jan 23;56(2):372–379. doi: 10.1016/0006-291x(74)90852-3. [DOI] [PubMed] [Google Scholar]
  19. Murofushi H. Protein kinases in Tetrahymena cilia. II. Partial purification and characterization of adenosine 3',5'-monophosphate-dependent and guanosine 3',5'-monophosphate-dependent protein kinases. Biochim Biophys Acta. 1974 Nov 25;370(1):130–139. doi: 10.1016/0005-2744(74)90039-4. [DOI] [PubMed] [Google Scholar]
  20. Tang F. Y., Hoskins D. D. Phosphoprotein phosphatase of bovine epididymal spermatozoa. Biochem Biophys Res Commun. 1975 Jan 20;62(2):328–335. doi: 10.1016/s0006-291x(75)80142-2. [DOI] [PubMed] [Google Scholar]
  21. Walsh D. A., Ashby C. D., Gonzalez C., Calkins D., Fischer E. H. Krebs EG: Purification and characterization of a protein inhibitor of adenosine 3',5'-monophosphate-dependent protein kinases. J Biol Chem. 1971 Apr 10;246(7):1977–1985. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES