Abstract
A monolayer culture system was developed to study the role of microtubules in insulin secretion. Cultured cells were obtained to study the role of microtubules in insulin secretion. Cultured cells were obtained by enzymatic digestion of pancreases from C57BL-KsJ mice 6-12 wk of age. On day 4 of culture, the medium was changed, control or treatment medium added, and frequent samples were removed for insulin assay. Microtubules and beta cells were identified by indirect immunofluorescence with monospecific antibodies to tubulin and insulin. An extensive microtubule network radiates from the perinuclear region of the beta cell to the plasma membrane. Although alterations in the calcium concentration of the medium did not affect the microtubule pattern, the absence of calcium or glucose in the medium inhibited insulin secretion (P less than 0.001). Optimum insulin release occurred at a calcium concentration of 2.5 mM. Colchicine, in concentrations of 10(-10) M, did not affect the microtubule immunofluorescent pattern, whereas concentrations of 1 and 5 x 10(-7) M decreased the number of microtubules, and microtubules could not be identified in cultures treated with 10(-6) M colchicine for 2 h. After a 2-h preincubation, the prolonged release of insulin at either 2.0 or 4.5 mg/ml of glucose was decreased by 10(-6) M colchicine (P less than 0.02). The immediate release of insulin was similar to that in control plates and occurred in cultures with no identifiable microtubules. Microtubules and insulin secretion were not altered by 10(-6) M lumicolchicine and prolonged insulin secretion recovered 24 h after removal of colchicine. These studies show that the microtubules facilitate sustained secretion of insulin but are not required for the immediate release of the hormone. Alterations in the extracellular calcium concentration which play an essential role in insulin secretion do not alter the microtubule pattern in the beta cell.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Borisy G. G., Olmsted J. B., Marcum J. M., Allen C. Microtubule assembly in vitro. Fed Proc. 1974 Feb;33(2):167–174. [PubMed] [Google Scholar]
- Cheng K., Katosoyannis P. G. The inhibition of sugar transport and oxidation in fat cell ghosts by colchicine. Biochem Biophys Res Commun. 1975 Jan 2;64(3):1069–1075. doi: 10.1016/0006-291x(75)90156-4. [DOI] [PubMed] [Google Scholar]
- DeBrabander M., Aerts F., Van de Veire R., Borgers M. Evidence against interconversion of microtubules and filaments. Nature. 1975 Jan 10;253(5487):119–120. doi: 10.1038/253119a0. [DOI] [PubMed] [Google Scholar]
- Fuller G. M., Brinkley B. R., Boughter J. M. Immunofluorescence of mitotic spindles by using monospecific antibody against bovine brain tubulin. Science. 1975 Mar 14;187(4180):948–950. doi: 10.1126/science.1096300. [DOI] [PubMed] [Google Scholar]
- Fuller G. M., Brinkley B. R. Structure and control of assembly of cytoplasmic microtubules in normal and transformed cells. J Supramol Struct. 1976;5(4):497(349)–514(366). doi: 10.1002/jss.400050407. [DOI] [PubMed] [Google Scholar]
- GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grodsky G. M. A threshold distribution hypothesis for packet storage of insulin. II. Effect of calcium. Diabetes. 1972;21(2 Suppl):584–593. doi: 10.2337/diab.21.2.s584. [DOI] [PubMed] [Google Scholar]
- HALES C. N., RANDLE P. J. Immunoassay of insulin with insulin-antibody precipitate. Biochem J. 1963 Jul;88:137–146. doi: 10.1042/bj0880137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howell S. L., Tyhurst M. Interaction between insulin-storage granules and F-actin in vitro. Biochem J. 1979 Feb 15;178(2):367–371. doi: 10.1042/bj1780367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LACY P. E. Electron microscopy of the islets of Langerhans. Diabetes. 1962 Nov-Dec;11:509–513. [PubMed] [Google Scholar]
- Lacy P. E., Howell S. L., Young D. A., Fink C. J. New hypothesis of insulin secretion. Nature. 1968 Sep 14;219(5159):1177–1179. doi: 10.1038/2191177a0. [DOI] [PubMed] [Google Scholar]
- Lacy P. E., Walker M. M., Fink C. J. Perifusion of isolated rat islets in vitro. Participation of the microtubular system in the biphasic release of insulin. Diabetes. 1972 Oct;21(10):987–998. doi: 10.2337/diab.21.10.987. [DOI] [PubMed] [Google Scholar]
- Leiter E. H., Coleman D. L., Eppig J. J. Endocrine pancreatic cells of postnatal "diabetes" (db) mice in cell culture. In Vitro. 1979 Jul;15(7):507–521. doi: 10.1007/BF02618153. [DOI] [PubMed] [Google Scholar]
- Malaisse-Lagae F., Amherdt M., Ravazzola M., Sener A., Hutton J. C., Orci L., Malaisse W. J. Role of microtubules in the synthesis, conversion, and release of (pro)insulin. A biochemical and radioautographic study in rat islets. J Clin Invest. 1979 Jun;63(6):1284–1296. doi: 10.1172/JCI109423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malaisse W. J., Malaisse-Lagae F., Van Obberghen E., Somers G., Devis G., Ravazzola M., Orci L. Role of microtubules in the phasic pattern of insulin release. Ann N Y Acad Sci. 1975 Jun 30;253:630–652. doi: 10.1111/j.1749-6632.1975.tb19234.x. [DOI] [PubMed] [Google Scholar]
- Malaisse W. J., Malaisse-Lagae F., Walker M. O., Lacy P. E. The stimulus-secretion coupling of glucose-induced insulin release. V. The participation of a microtubular-microfilamentous system. Diabetes. 1971 May;20(5):257–265. doi: 10.2337/diab.20.5.257. [DOI] [PubMed] [Google Scholar]
- Malaisse W. J., Orci L. The role of the cytoskeleton in pancreatic B-cell function. Methods Achiev Exp Pathol. 1979;9:112–136. [PubMed] [Google Scholar]
- Margolis R. L., Wilson L. Opposite end assembly and disassembly of microtubules at steady state in vitro. Cell. 1978 Jan;13(1):1–8. doi: 10.1016/0092-8674(78)90132-0. [DOI] [PubMed] [Google Scholar]
- Mizel S. B., Wilson L. Nucleoside transport in mammalian cells. Inhibition by colchicine. Biochemistry. 1972 Jul 4;11(14):2573–2578. doi: 10.1021/bi00764a003. [DOI] [PubMed] [Google Scholar]
- Montague W., Howell S. L., Green I. C. Insulin release and the microtubular system of the islets of Langerhans: effects of insulin secretagogues on microtubule subunit pool size. Horm Metab Res. 1976 May;8(3):166–169. doi: 10.1055/s-0028-1093653. [DOI] [PubMed] [Google Scholar]
- Murphy D. B., Tilney L. G. The role of microtubules in the movement of pigment granules in teleost melanophores. J Cell Biol. 1974 Jun;61(3):757–779. doi: 10.1083/jcb.61.3.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicklas W. J., Puszkin S., Berl S. Effect of vinblastine and colchicine on uptake and release of putative transmitters by synaptosomes and on brain actomyosin-like protein. J Neurochem. 1973 Jan;20(1):109–121. doi: 10.1111/j.1471-4159.1973.tb12109.x. [DOI] [PubMed] [Google Scholar]
- Ostlund R. E., Jr Contractile proteins and pancreatic beta-cell secretion. Diabetes. 1977 Mar;26(3):245–252. doi: 10.2337/diab.26.3.245. [DOI] [PubMed] [Google Scholar]
- Ostlund R. E., Leung J. T., Kipnis D. M. Muscle actin filaments bind pituitary secretory granules in vitro. J Cell Biol. 1977 Apr;73(1):78–87. doi: 10.1083/jcb.73.1.78. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pipeleers D. G., Pipeleers-Marichal M. A., Kipnis D. M. Microtubule assembly and the intracellular transport of secretory granules in pancreatic islets. Science. 1976 Jan 9;191(4222):88–90. doi: 10.1126/science.1108194. [DOI] [PubMed] [Google Scholar]
- Satir P. How cilia move. Sci Am. 1974 Oct;231(4):44–52. doi: 10.1038/scientificamerican1074-44. [DOI] [PubMed] [Google Scholar]
- Sherline P., Lee Y. C., Jacobs L. S. Binding of microtubules to pituitary secretory granules and secretory granule membranes. J Cell Biol. 1977 Feb;72(2):380–389. doi: 10.1083/jcb.72.2.380. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sloboda R. D., Rudolph S. A., Rosenbaum J. L., Greengard P. Cyclic AMP-dependent endogenous phosphorylation of a microtubule-associated protein. Proc Natl Acad Sci U S A. 1975 Jan;72(1):177–181. doi: 10.1073/pnas.72.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Somers G., Van Obberghen E., Devis G., Ravazzola M., Malaisse-Lagae F., Malaisse W. J. Dynamics of insulin release and microtubular-microfilamentous system. III. Effect of colchicine upon glucose-induced insulin secretion. Eur J Clin Invest. 1974 Oct;4(5):299–305. doi: 10.1111/j.1365-2362.1974.tb00407.x. [DOI] [PubMed] [Google Scholar]
- TAYLOR E. W. THE MECHANISM OF COLCHICINE INHIBITION OF MITOSIS. I. KINETICS OF INHIBITION AND THE BINDING OF H3-COLCHICINE. J Cell Biol. 1965 Apr;25:SUPPL–SUPPL:160. doi: 10.1083/jcb.25.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson L., Friedkin M. The biochemical events of mitosis. I. Synthesis and properties of colchicine labeled with tritium in its acetyl moiety. Biochemistry. 1966 Jul;5(7):2463–2468. doi: 10.1021/bi00871a042. [DOI] [PubMed] [Google Scholar]