Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Feb 1;92(2):559–564. doi: 10.1083/jcb.92.2.559

Microinjection of cytoplasm as a test of complementation in Paramecium

PMCID: PMC2112068  PMID: 7061597

Abstract

Mutants in Paramecium tetraurelia, unable to generate action potentials, have been isolated as cells which show no backward swimming in response to ionic stimulation. These "pawn" mutants belong to at least three complementation groups designated pwA, pwB, and pwC. We have found that microinjection of cytoplasm from a wild-type donor into a pawn recipient of any of the three complementation groups restores the ability of the pawn to generate action potentials and hence swim backward. In addition, the cytoplasm from a pawn cannot restore a recipient of the same complementation group, but that from a pawn of a different group can. Electrophysiological analysis had demonstrated that the restoration of backward swimming is not due to a simple addition of ions but represents a profound change in the excitable membrane of the recipient pawn cells. Using known pawn mutants and those which had previously been unclassified, we have been able to establish a perfect concordance of genetic complementation and complementation by cytoplasmic transfer through microinjection. This method has been used to classify pawn mutants that are sterile or hard- to-mate and to examine the ability of cytoplasms from different species of ciliated protozoa to restore the ability to swim backward in the pawn mutants of P. tetraurelia. A cell homogenate has also been fractionated by centrifugation to further purify the active components. These results demonstrate that transfer of cytoplasm between cells by microinjection can be a valid and systematic method to classify mutants. This test is simpler to perform than the genetic complementation test and can be used under favorable conditions in mutants that are sterile and in cells of different species.

Full Text

The Full Text of this article is available as a PDF (640.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adoutte A., Ramanathan R., Lewis R. M., Dute R. R., Ling K. Y., Kung C., Nelson D. L. Biochemical studies of the excitable membrane of Paramecium tetraurelia. III. Proteins of cilia and ciliary membranes. J Cell Biol. 1980 Mar;84(3):717–738. doi: 10.1083/jcb.84.3.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beale G. H., Knowles J. K., Tait A. Mitochondrial genetics in Paramecium. Nature. 1972 Feb 18;235(5338):396–397. doi: 10.1038/235396a0. [DOI] [PubMed] [Google Scholar]
  3. Beisson J., Cohen J., Lefort-Tran M., Pouphile M., Rossignol M. Control of membrane fusion in exocytosis. Physiological studies on a Paramecium mutant blocked in the final step of the trichocyst extrusion process. J Cell Biol. 1980 May;85(2):213–227. doi: 10.1083/jcb.85.2.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berger J. D. Gene expression and phenotypic change in Paramecium tetraurelia exconjugants. Genet Res. 1976 Apr;27(2):123–134. doi: 10.1017/s0016672300016335. [DOI] [PubMed] [Google Scholar]
  5. Castellucci V. F., Kandel E. R., Schwartz J. H., Wilson F. D., Nairn A. C., Greengard P. Intracellular injection of t he catalytic subunit of cyclic AMP-dependent protein kinase simulates facilitation of transmitter release underlying behavioral sensitization in Aplysia. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7492–7496. doi: 10.1073/pnas.77.12.7492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chang S. Y., Kung C. Temperature-sensitive pawns: conditional behavioral mutants of Paramecium aurelia. Science. 1973 Jun 15;180(4091):1197–1199. doi: 10.1126/science.180.4091.1197. [DOI] [PubMed] [Google Scholar]
  7. Chang S. Y., Van Houten J., Robles L. J., Lui S. S., Kung C. An extensive behavioural and genetic analysis of the pawn mutants in Paramecium aurelia. Genet Res. 1974 Apr;23(2):165–173. doi: 10.1017/s0016672300014786. [DOI] [PubMed] [Google Scholar]
  8. Eckert R., Brehm P. Ionic mechanisms of excitation in Paramecium. Annu Rev Biophys Bioeng. 1979;8:353–383. doi: 10.1146/annurev.bb.08.060179.002033. [DOI] [PubMed] [Google Scholar]
  9. Fraley R., Subramani S., Berg P., Papahadjopoulos D. Introduction of liposome-encapsulated SV40 DNA into cells. J Biol Chem. 1980 Nov 10;255(21):10431–10435. [PubMed] [Google Scholar]
  10. Fuhrman F. A. Tetrodotoxin. It is a powerful poison that is found in two almost totally unrelated kinds of animal: puffer fish and newts. It has been serving as a tool in nerve physiology and may provide a model for new local anesthetics. Sci Am. 1967 Aug;217(2):60–71. [PubMed] [Google Scholar]
  11. Furusawa M., Nishimura T., Yamaizumi M., Okada Y. Injection of foreign substances into single cells by cell fusion. Nature. 1974 May 31;249(456):449–450. doi: 10.1038/249449a0. [DOI] [PubMed] [Google Scholar]
  12. Gibson I. Transplantation of killer endosymbionts in paramecium. Nature. 1973 Jan 12;241(5385):127–129. doi: 10.1038/241127a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Haga N., Hiwatashi K. A protein called immaturin controlling sexual immaturity in Paramecium. Nature. 1981 Jan 15;289(5794):177–179. doi: 10.1038/289177a0. [DOI] [PubMed] [Google Scholar]
  14. Hiwatashi K., Haga N., Takahashi M. Restoration of membrane excitability in a behavioral mutant of Paramecium caudatum during conjugation and by microinjection of wild-type cytoplasm. J Cell Biol. 1980 Feb;84(2):476–480. doi: 10.1083/jcb.84.2.476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hynes M. J. Fine-structure mapping of the acetamidase structural gene and its controlling region in Aspergillus nidulans. Genetics. 1979 Mar;91(3):381–392. doi: 10.1093/genetics/91.3.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kaczmarek L. K., Jennings K. R., Strumwasser F., Nairn A. C., Walter U., Wilson F. D., Greengard P. Microinjection of catalytic subunit of cyclic AMP-dependent protein kinase enhances calcium action potentials of bag cell neurons in cell culture. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7487–7491. doi: 10.1073/pnas.77.12.7487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Knowles J. K. An improved microinjection technique in Paramecium aurelia. Transfer of mitochondria conferring erythromycin-resistance. Exp Cell Res. 1974 Sep;88(1):79–87. doi: 10.1016/0014-4827(74)90620-x. [DOI] [PubMed] [Google Scholar]
  18. Knowles J. K., Tait A. A new method for studying the genetic control of specific mitochondrial proteins in Paramecium aurelia. Mol Gen Genet. 1972;117(1):53–59. doi: 10.1007/BF00268837. [DOI] [PubMed] [Google Scholar]
  19. Koizumi S. Microinjection and transfer of cytoplasm in Paramecium. Experiments on the transfer of kappa particles into cells at different stages. Exp Cell Res. 1974 Sep;88(1):74–78. doi: 10.1016/0014-4827(74)90619-3. [DOI] [PubMed] [Google Scholar]
  20. Kung C., Eckert R. Genetic modification of electric properties in an excitable membrane (paramecium-calcium conductance-electrophysiological measurements-membrane mutant). Proc Natl Acad Sci U S A. 1972 Jan;69(1):93–97. doi: 10.1073/pnas.69.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kung C. Genic mutants with altered system of excitation in Paramecium aurelia. II. Mutagenesis, screening and genetic analysis of the mutants. Genetics. 1971 Sep;69(1):29–45. doi: 10.1093/genetics/69.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ling K. Y., Kung C. Ba2+ influx measures the duration of membrane excitation in Paramecium. J Exp Biol. 1980 Feb;84:73–87. doi: 10.1242/jeb.84.1.73. [DOI] [PubMed] [Google Scholar]
  23. Loyter A., Zakai N., Kulka R. G. "Ultramicroinjection" of macromolecules or small particles into animal cells. A new technique based on virus-induced cell fusion. J Cell Biol. 1975 Aug;66(2):292–304. doi: 10.1083/jcb.66.2.292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Oertel D., Schein S. J., Kung C. Separation of membrane currents using a Paramecium mutant. Nature. 1977 Jul 14;268(5616):120–124. doi: 10.1038/268120a0. [DOI] [PubMed] [Google Scholar]
  25. Ong T. M., Serres F. J. Mutation induction by difunctional alkylating agents in Neurospora crassa. Genetics. 1975 Jul;(3):475–482. doi: 10.1093/genetics/80.3.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pagano R. E., Takeichi M. Adhesion of phospholipid vesicles to Chinese hamster fibroblasts. Role of cell surface proteins. J Cell Biol. 1977 Aug;74(2):531–546. doi: 10.1083/jcb.74.2.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Satow Y., Kung C. Ca-induced K+-outward current in Paramecium tetraurelia. J Exp Biol. 1980 Oct;88:293–303. doi: 10.1242/jeb.88.1.293. [DOI] [PubMed] [Google Scholar]
  28. Satow Y., Kung C. Membrane currents of pawn mutants of the pwA group in Paramecium tetraurelia. J Exp Biol. 1980 Feb;84:57–71. doi: 10.1242/jeb.84.1.57. [DOI] [PubMed] [Google Scholar]
  29. Satow Y., Kung C. Mutants with reduced Ca activation in Paramecium aurelia. J Membr Biol. 1976 Aug 26;28(2-3):277–294. doi: 10.1007/BF01869701. [DOI] [PubMed] [Google Scholar]
  30. Schlegel R. A., Rechsteiner M. C. Microinjection of thymidine kinase and bovine serum albumin into mammalian cells by fusion with red blood cells. Cell. 1975 Aug;5(4):371–379. doi: 10.1016/0092-8674(75)90056-2. [DOI] [PubMed] [Google Scholar]
  31. Shusterman C. L., Thiede E. W., Kung C. K-resistant mutants and "adaptation" in Paramecium. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5645–5649. doi: 10.1073/pnas.75.11.5645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stacey D. W., Allfrey V. G. Evidence for the autophagy of microinjected proteins in HeLA cells. J Cell Biol. 1977 Dec;75(3):807–817. doi: 10.1083/jcb.75.3.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Szoka F., Magnusson K. E., Wojcieszyn J., Hou Y., Derzko Z., Jacobson K. Use of lectins and polyethylene glycol for fusion of glycolipid-containing liposomes with eukaryotic cells. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1685–1689. doi: 10.1073/pnas.78.3.1685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wilson T., Papahadjopoulos D., Taber R. Biological properties of poliovirus encapsulated in lipid vesicles: antibody resistance and infectivity in virus-resistant cells. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3471–3475. doi: 10.1073/pnas.74.8.3471. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES